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Problem

- We consider a system composed of N independent machines
that may request renewable maintenance jobs by q parallel
processors.

- The number of processors is limited compared to the number
of machines in the system, q << N
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Problem

- We consider the time horizon [0,T ]

- At the initial time, all machines are brand-new.

- The processing time pi is specific and given for each machine.
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Problem

- On each machine, except the first job, the release date and
the due date of the other jobs are computed by the end of the
precedent one.

- We note that ci ,ki , ri ,ki , di ,ki are respectively the completion
date, the release date, the due date of the kthi job on the i th

machine.

ri ,ki = ci ,ki−1 + ρi

di ,ki = ci ,ki−1 + δi

where ρi < δi and they are given for each machine.
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Problem

The total of makespan and the tardiness of jobs on the time
horizon T is expressed by:

CT =
N∑
i=1

( ∑
ki/ri,ki∈T

(
W0(ci ,ki − ri ,ki ) + W1 max(0, ci ,ki − di ,ki )

))
where W0 and W1 represent respectively the costs per time period
of the jobs without and with tardiness.
The aim is to minimize the total of makespan and tardiness on the
time horizon. It means that we have to minimize CT
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Mathematical formulation

We divide the time horizon into H intervals. We introduce the
decision variables xi ,t defined as: xi ,t = 1 if i th machine
maintenance takes place at the time t, 0 otherwise.The required
constraints on the number q of available processors is then
expressed as

N∑
i=1

xi ,t ≤ q ∀t = 1, 2, ..,H. (1)
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Mathematical formulation

The constraints ensuring that the duration between two
consecutive maintenance jobs on the i th machine is greater than ρi
can be written as

xi ,t + xi ,t+1 + ...+ xi ,t+ρi+pi−1 ≤ pi ∀ t = 1, 2, ...,H − ρi − pi + 1.
(2)
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Mathematical formulation

Since every machine is brand-new at the beginning of the
considered horizon, we know that

xi ,t = 0 ∀i , ∀t < ρi . (3)

For assuring that the job processing time of the i th machine is pi ,
we need

xi ,H +
H−1∑
t=1

|xi ,t+1 − xi ,t | =
2

pi

H∑
t=1

xi ,t .

This constraint is not linear. We replace it by the set of linear
constraints:
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Mathematical formulation

H∑
t=1

zi ,t =
2

pi

H∑
t=1

xi ,t ∀i = 1, 2, ...,N; (4)

xi ,t+1 − xi ,t ≤ zi ,t ∀i = 1, 2, ..,N ∀t = 1, 2, ..,H − 1; (5)

xi ,t − xi ,t+1 ≤ zi ,t ∀i = 1, 2, ..,N ∀t = 1, 2, ..,H − 1; (6)

zi ,H = xi ,H ∀i = 1, 2, ..,N; (7)

0 ≤ zi ,t ≤ 1 ∀i , ∀t = 1, 2, ..,H. (8)
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Mathematical formulation

We now define the objective function of our optimization problem.

It is easy to see that 1
pi

H∑
i=1

xi ,t is the maintenance number of i th

machine in horizon [0,H], the flow-time of i th machine in horizon
[0,H] is computed as follows:∑

ki/ri,ki∈H
(ci ,ki − ri ,ki ) = H − (1 + 1

pi

H∑
i=1

xi ,t).ρi .
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Mathematical formulation

For computing the tardiness, we consider two consecutive
maintenances (see Figure).

Figure:

In this figure, t represents the completion date of the precedent
job. t + δi , t

′, t ′ − pi are, respectively, the due date, the
completion date, the beginning date of the next job. The tardiness
is t ′ − t − δi .
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Mathematical formulation

By considering the variables wi ,t satisfying

0 ≤ wi ,t ≤ 1

and
1− (xi ,t + xi ,t+1 + ....+ xi ,t+δi−pi−1) ≤ wi ,t .

The tardiness is the number of wi ,t which are equal to 1. The

tardiness cost is so expressed by W1.
H−δi+pi+1∑

t=1
wi ,t .
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Mathematical formulation

The total cost on the i th machine is therefore expressed as

C = W0.H −W0(1 +
1

pi

H∑
i=1

xi ,t).ρi + W1.

H−δi+pi+1∑
t=1

wi ,t

.
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Mathematical formulation

Finally, the optimization model of our problem can be written in
the form

(P) min
N∑
i=1

{
W0.(H−ρi )−W0.

ρi
pi

H∑
t=1

xi ,t+W1.

H−δi+pi+1∑
t=1

wi ,t

}
,

subject to the constraints (1-8) and

xi ,t+xi ,t+1+....+xi ,t+δi−pi−1+wi ,t ≥ 1 ∀i , ∀t = 1, 2, ..,H−δi+pi+1.
(9)

0 ≤ wi ,t ≤ 1 ∀i , ∀t = 1, 2, ...,H − δi + pi + 1. (10)

xi ,t ∈ {0, 1} ∀i , ∀t = 1, 2, ..,H. (11)
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How to solve the problem (P)?
Method based on DC Programming and DCA.
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DC programming

DC = difference of convex functions;DCA = DC Algorithm
A DC programming takes the form

(P) α = inf{f (x) := g(x)− h(x) : x ∈ Rn}

where g and h are l.s.c(lower semi continuous) proper convex
functions on Rn

The dual problem of (P):

(D) α = inf{h∗(y)− g∗(y) : y ∈ Rn}

where
g∗(y) = sup{〈x , y〉 − g(x) : x ∈ Rn}

(the conjugate function)
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DC Algorithm

About DCA and its applications
(http://lita.sciences.univ-metz.fr/ lethi/DCA.html)
Introduced in 1985 by PHAM DINH Tao
Developped since 1994 by LE THI Hoai An and PHAM DINH Tao
Based on local optimality and the duality in DC
DCA to solve DC programming problem

Initialization. Choose x0 ∈ Rn; set k = 0.

Step 1. Compute a subgradient yk ∈ ∂h(xk).

Step 2. Compute

xk+1 ∈ Argmin{g(x)− 〈yk , x〉 : x ∈ Rn}

Step 3. If the STOPPING CRITERIA is satisfied, STOP;
Otherwise, set k = k + 1, go to Step 1.
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Penalty Theorem

Theorem(H.A. LE THI, T.PHAM DINH, and M.LE DUNG)
Let K be a nonempty bounded polyhedral convex set, f be a finite concave
function on K and p be a finite nonnegative concave function on K . Then
there exists η0 ≥ 0 such that for η > η0 the following problems have the same
optimal value and the same solution set

(Pt) α(t) = min
{
f (x) + η.p(x) : x ∈ K

}
(P) α = min

{
f (x) : x ∈ K , p(x) ≤ 0

}
Furthermore

- If the vertex set of K , denoted by V (K), is contained in
x ∈ K : p(x) ≤ 0, then η0 = 0.

- If p(x) > 0 for some x in V (K), then

η0 = min
{

f (x)−α(0)
S0

: x ∈ K , p(x) ≤ 0
}

, where

S0 = min
{
p(x) : x ∈ V (K), p(x) > 0

}
> 0.



Problem statement
Mathematical formulation

DCA for solving the resulting problem
Numerical results

Conclusion

DCA applied to the problem (P)

Let L be the number of variables of the problem (P),

L = 2NH +
N∑
i=1

(H − δi + pi + 1). Denote by S the feasible set of

(P) and let the linear relaxation domain of S be
K := {(x , z ,w) ∈ RL satisfy (1-10) and xi ,t ∈ [0, 1]}
We consider the function p : RL → R defined by

p(x , z ,w) =
N∑
i=1

H∑
t=1

xi ,t(1− xi ,t).
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DCA applied to the problem (P)

By using penalty theorem, we obtain, for the sufficiently large
number η, the equivalent concave minimization problem to (P)

min
{ N∑

i=1

{
W0(H − ρi )−W0

ρi
pi

H∑
t=1

xi ,t + W1.
H−δi+pi+1∑

t=1
wi ,t

}
+

η.p(x , z ,w) : (x , z ,w) ∈ K
}
. This is a DC problem whose feasible

set is K and the objective function is

fη(x , z ,w) = g(x , z ,w)− h(x , z ,w) , where (12)

g(x , z ,w) := χK (x , z ,w);

h(x , z ,w) := −
N∑
i=1

{
W0(H − ρi )−W0.

ρi
pi

H∑
t=1

xi ,t +

W1.
H−δi+pi+1∑

t=1
wi ,t

}
+ η.

N∑
i=1

H∑
t=1

xi ,t(xi ,t − 1).
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DCA applied to the problem (P)

DCA applied to the DC program (12) consists of computing, at
each iteration `, the two sequences

{
ul
}

and
{
ς` = (x`, z`,w `)

}
.

(x`+1, z`+1,w `+1) is obtained by solving the next linear program

min{−〈(x , z ,w), u`〉 : (x , z ,w) ∈ K}. (13)

From the definition of h, u` ∈ ∂h(x`, z`,w `) is computed as
u`H.(i−1)+t = 2.ηx`i ,t + W0.

ρi
pi
∀i = 1, 2, ..,N,∀t = 1, 2, ...,H,

u`j = 0 ∀j = NH,NH + 1, ..., 2NH.

u`j = −W1 otherwise.

(14)
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DCA applied to the problem (P)

The DCA applied to (12) can be described as follows.
Initialization
Let ε be a sufficiently small positive number. Set ` = 0 and
(x0, z0,w0) ∈ RL.
Repeat
Calculate u` ∈ ∂h(x`, z`,w `) via (14).
Solve the linear problem (13) to obtain (x`+1, z`+1,w `+1).
`←− `+ 1
Until ‖(x`+1, z`+1,w `+1)− (x`, z`,w `)‖ ≤ ε.
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Numerical results

- We have tested our algorithms on systems with an overall
number of 100 machines (N = 100). The parameters W0 and
W1 are chosen as 1.0. The processor number q is varied from
2% to 20% of the machine number.

- The two horizons considered are respectively H = 60 days (2
months) and H = 90 days (3 months).

- The efficiency of DCA is compared with the algorithm based
on FTR (flow time rule) algorithm

- The average cost (the mean cost) is calculated by Totalcost
N

- The average processing time (the mean time) is computed by
Tutilization

q , where Tutilization is the total time of processors
utilization.
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Result with H=60

Figure: Results with H=60
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Result with H=90

Figure: Results with H=90
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Result with H=60

Figure: Average processing time, H=60
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Result with H=90

Figure: Average processing time, H=90
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Conclusion

- We present the discrete formulation for minimizing the
maintenance cost involving flow-time and tardiness penalty. This is
the firt time that a determinist model for this problem is presented.
- A new and efficient approach based on DC Programming and
DCA is proposed to solve the considered problem.
- The computational results show that DCA overcomes FTR
Algorithm, a recent efficient heuristic approach.
- In a future work we plan to combine DCA with global approaches.
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