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Abstract. We consider a single-period portfolio selection problem which
consists of minimizing the total transaction cost subject to different types
of constraints on feasible portfolios. The transaction cost function is sep-
arable, i.e., it is the sum of the transaction cost associated with each
trade, but discontinuous. This optimization problem is nonconvex and
very hard to solve. We investigate in this work a DC (Difference of Con-
vex functions) programming framework for the solution methods. First,
the objective function is approximated by a DC function. Then a DC for-
mulation for the resulting problem is proposed for which two approaches
are developed: DCA (DC Algorithm) and a hybridization of Branch and
Bound and DCA.

Keywords: portfolio selection, separable transaction cost, DC program-
ming, DCA, Branch and Bound.

1 Introduction

The mean-variance’s model proposed by Markowitz [9] in 1952 is known as a
basic for the development of various portfolio selection techniques. While the
Markowitz’ model is a convex program, extended models considering some fac-
tors like transaction costs, cardinality constraints, shortselling, buy-in threshold
constraints, etc,... are, in most of cases, nonconvex and very difficult to solve. The
portfolio optimization problems including transaction costs have been studied by
many researchers [1–4].

In [8], the authors studied two alternative models for the problem of single-
periodportfolio optimization.The first consists ofmaximizing the expected return,
taking transaction costs into account, and subject to different type of constraints
on the feasible portfolios. They proposed a heuristic method for solving this model
where the transaction cost is separable and discontinuous. The secondmodel deals
with minimizing the total nonconvex transaction cost subject to feasible portfolio
constraints.The authors claimed that their heuristicmethod for solving the former
model can be adapted to solve the later.
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The starting point of our work is the second model introduced in [8]. We
consider a little modified model where the constraints include shortselling con-
straints, limit on expected return, limit on variance, and diversification con-
straints. The considered transaction cost is assumed to be separable, say the
sum of the transaction cost associated with each trade. It is a discontinuous
function that results to a difficult nonconvex program.

We investigate DC programming and DCA for designing solution methods to
this problem. DC programming and DCA were first introduced by Pham Dinh
Tao in 1985 and have been extensively developed since 1994 by Le Thi Hoai An
and Pham Dinh Tao in their common works. DCA has been successfully applied
to many large-scale nonconvex programs in various domains of applied sciences,
to become now classic and popular (see e.g. [5, 7, 6] and references therein).
We first approximate the discontinuous nonconvex objective function by a DC
function and then develop DCA for tackling the resulting DC problem. For glob-
ally solving the original problem, we propose a hybrid algorithm that combines
DCA and a Branch-and-Bound (B&B) scheme. DCA is used for solving the DC
approximation problem to compute good upper bounds in the B&B algorithm.
Lower bounds are obtained by solving relaxation problems which consist of min-
imizing a linear function under linear and convex quadratic constraints.

The rest of this paper is organized as follows. In the next section, we describe
the considered portfolio problem and its mathematical formulation. Section 3 is
concerned with the DC approximation of the considered problem and the de-
scription of DCA for solving it. The hybrid Branch and Bound - DCA algorithm
is presented in Section 4 while some conclusions are included in the last section.

2 Problem Description and Mathematical Formulation

Consider an investment portfolio that consists of holdings in some or all of n
assets.

The current holdings in each asset are w = (wi, . . . , wn)
T . The total current

wealth is then 1Tw, where 1 is a vector with all entries equal to one. The
amount transacted in asset i is xi, with xi > 0 for buying, xi < 0 for selling
and x = (x1, . . . , xn)

T is a portfolio selection. After transactions, the adjusted
portfolio is w + x.

The adjusted portfolio w+x is held for a fixed period time. At the end of that
period, the return on asset i is the random variable ai. We assume knowledge of
the first and the second moments of the joint distribution of a = (a1, . . . , an),

E(a) = ā, E(a− ā)(a− ā)T = Σ.

A riskless asset can be included, in which case the corresponding āi equal to its
return and the i-th row and column of Σ are zero.

The wealth at the end of the period is a random variable, W = aT (w + x)
with expected value and variance given by

EW = āT (w + x), E(W −EW )2 = (w + x)TΣ(w + x). (1)
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We consider the problem of minimizing the total transaction costs subject to
portfolio constraints: ⎧

⎪⎨

⎪⎩

min φ(x)

s.t. ā(w + x) ≥ rmin,

w + x ∈ S,
(2)

where rmin is the desired lower bound on the expected return and S ⊆ R
n is the

portfolio constraint set.
The portfolio constraint set S can be defined from the following convex con-

straints:

1. Shortselling constraints: Individual bounds si on the maximum amount of
shortselling allowed on asset i are

wi + xi ≥ −si, i = 1, . . . , n. (3)

If shortselling is not permitted, the si are set to zero. Otherwise, si > 0.
2. Variance: The standard deviation of the end period wealthW is constrained

to be less than σmax by the convex quadratic inequality

(w + x)TΣ(w + x) ≤ σ2
max. (4)

((4) is a second-order cone constraint).
3. Diversification constraints: Constraints on portfolio diversification can be

expressed in terms of linear inequalities and therefore are readily handled by
convex optimization. Individual diversification constraints limit the amount
invested in each asset i to a maximum of pi,

wi + xi ≤ pi, i = 1, . . . , n. (5)

Alternatively, we can limit the fraction of the total wealth held in each asset,

wi + xi ≤ λi1T (w + x), i = 1, . . . , n. (6)

They are convex inequality constraints on x.

Transaction costs can be used to model a number of costs, such as brokerage
fee, bid-ask spread, taxes or even fund loads. In this paper, the transaction costs
φ(x) is defined by

φ(x) =

n∑

i=1

φi(xi), (7)

where φi is the transaction cost function for asset i. We will consider a simple
model that includes fixed plus linear costs. Let βi be the fixed costs common
associated with buying and selling asset i. The fixed plus linear transaction cost
function is given by

φi(xi) =

⎧
⎪⎨

⎪⎩

0 if xi = 0,

βi − α1
ixi if xi < 0,

βi + α2
ixi if xi > 0.

(8)

The function φ is nonconvex, unless the fixed costs are zero.
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We develop below two approaches based on DC programming and DCA for
solving the problem (2) with S being defined in (3) - (6) and φ being given in
(7), (8).

3 DC Programming and DCA for Solving (2)

3.1 DC Approximation Problem

Let C be the feasible set of (2). Since φ is discontinuous, we will construct a DC
approximation of φ. We first compute upper bounds u0i and lower bounds l0i for
variables xi by solving 2n convex problems:

min{xi : x ∈ C} (LBi), max{xi : x ∈ C} (UBi). (9)

Let R0 =
n∏

i=1

[l0i , u
0
i ]. The problem (2) can be rewritten as

ω = min

{

φ(x) =

n∑

i=1

φi(xi) : x ∈ C ∩R0

}

. (P )

For each i = 1, . . . , n, let εi > 0 be a sufficiently small number chosen as follows:

⎧
⎪⎨

⎪⎩

εi < min{−l0i , u0i } if l0i < 0 < u0i ,

εi < u0i if l0i = 0 < u0i ,

εi < −l0i if l0i < u0i = 0.

Consider the functions φi, ψi : R −→ R given by

φi(xi) =

{
βi − α1

i xi, xi ≤ 0

βi + α2
i xi, xi ≥ 0

, ψi(xi) =

{
−c1ixi, xi ≤ 0

c2ixi, xi ≥ 0
,

where cji =
(

βi

εi
+ αj

i

)
, j = 1, 2. By definition, φi, ψi are convex functions. Then,

a DC approximation function f of φ can be

f(x) =

n∑

i=1

fi(xi), (10)

where fi(xi) = gi(xi)− hi(xi) with gi, hi being determined by

• gi(xi) = 0, hi(xi) = −βi + α1
i xi if l

0
i < u0i < 0;

• gi(xi) = 0, hi(xi) = −βi − α2
i xi if 0 < l0i < u0i ;

• gi(xi) = 0, hi(xi) = −min{−c1ixi, βi − α1
i xi} if l0i < u0i = 0;

• gi(xi) = 0, hi(xi) = −min{c2ixi, βi + α2
ixi} if 0 = l0i < u0i ;

• and if li < 0 < ui:
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gi(xi) = φi(xi) + ψi(xi) =

{
βi − (α1

i + c1i )xi if xi ≤ 0

βi + (α2
i + c2i )xi if xi ≥ 0

,

hi(xi) = max{φi(xi), ψi(xi)} =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−c1ixi if xi ≤ −εi
βi − α1

ixi if − εi ≤ xi ≤ 0

βi + α2
ixi if 0 ≤ xi ≤ εi

c2i xi if xi ≥ εi.
It is easy to show that for all cases, gi, hi are convex polyhedral functions over

R. Therefore, with g(x) =
n∑

i=1

gi(xi) and h(x) =
n∑

i=1

hi(xi), g−h is a DC decom-

position of f . In addition,

• min{f(x) : x ∈ C ∩R0} ≤ min

{

φ(x) =
n∑

i=1

φi(xi) : x ∈ C ∩R0

}

.

• For each i, the smaller value of εi, the better approximation of fi to φi over
[l0i , u

0
i ].

The problem (P ) with φ being replaced by f ,

μ = min{f(x) = g(x)− h(x) : x ∈ C ∩R0} (Pdc)

is a DC approximation problem of (P ). We will investigate a DCA scheme for
solving this problem.

3.2 DCA for Solving (Pdc)

DC Programming and DCA. For a convex function θ, the subdifferential of
θ at x0 ∈ domθ := {x ∈ R

n : θ(x0) < +∞}, denoted by ∂θ(x0), is defined by

∂θ(x0) := {y ∈ R
n : θ(x) ≥ θ(x0) + 〈x− x0, y〉, ∀x ∈ R

n},

and the conjugate θ∗ of θ is

θ∗(y) := sup{〈x, y〉 − θ(x) : x ∈ R
n}, y ∈ R

n.

A general DC program is that of the form:

α = inf{F (x) := G(x)−H(x) |x ∈ R
n}, (11)

where G,H are lower semi-continuous proper convex functions on R
n. Such a

function F is called a DC function, and G−H a DC decomposition of F while
G and H are the DC components of F . Note that, the closed convex constraint
x ∈ C can be incorporated in the objective function of (11) by using the indicator
function on C denoted by χC which is defined by χC(x) = 0 if x ∈ C, and +∞
otherwise.
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A point x∗ is called a critical point of G − H , or a generalized Karush-Kuhn-
Tucker point (KKT) of (Pdc)) if

∂H(x∗) ∩ ∂G(x∗) �= ∅. (12)

Based on local optimality conditions and duality in DC programming, the DCA
consists in constructing two sequences {xk} and {yk} (candidates to be solu-
tions of (11) and its dual problem respectively). More precisely, each iteration
k of DCA approximates the concave part −H in (11) by its affine majorization
(that corresponds to taking yk ∈ ∂H(xk)) and minimizes the resulting convex
program.

Generic DCA Scheme
Initialization: Let x0 ∈ R

n be an initial guess, 0← k.
Repeat
- Calculate yk ∈ ∂H(xk)
- Calculate xk+1 ∈ arg min{G(x)− 〈x, yk〉 : x ∈ R

n} (Pk)
- k + 1← k
Until convergence of {xk}.

It is worth noting that DCA works with the convex DC components G and
H but not the DC function F itself (see [5, 6, 10, 11]). Moreover, a DC function
F has infinitely many DC decompositions which have crucial impacts on the
performance (speed of convergence, robustness, efficiency, globality of computed
solutions,...) of DCA.

Convergence properties of DCA and its theoretical basis can be found in
[5, 6, 10]. For instant, it is important to mention that (for simplify we omit here
the dual part)

– DCA is a descent method (the sequences {G(xk) − H(xk)} is decreasing)
without linesearch.

– If the optimal value α of problem (11) is finite and the infinite sequence {xk}
is bounded then every limit point x̃ of the sequence {xk} is a critical point
of G−H .

– DCA has a linear convergence for general DC programs.
– DCA has a finite convergence for polyhedral DC programs.

The next subsection is devoted to the development of DCA applied on (Pdc).

DC Algorithm for Solving the Problem (Pdc). According to the generic
DCA scheme, at each iteration k, we have to compute a subgradient yk ∈ ∂h(xk)
and then solve the convex program of the form (Pk)

min{g(x)− 〈yk, x〉 : x ∈ C ∩R0} (13)

which is equivalent to

min
x,t

{
n∑

i=1

ti − 〈yk, x〉 : gi(xi) ≤ ti, ∀i = 1, . . . , n, x ∈ C ∩R0

}

. (14)

A subgradient yk ∈ ∂h(xk) is computed by
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– if l0i < u0i < 0 : yki = α1
i ;

– if 0 < l0i < u0i : y
k
i = −α2

i ;
– if l0i < u0i = 0 : yki = α1

i if xki < −εi, c1i if xki > −εi,∈ [α1
i , c

1
i ] if x

k
i = −εi;

– if 0 = l0i < u0i : y
k
i = −c2i if xki < εi,−α2

i if xki > εi,∈ [−c2i ,−α2
i ] if x

k
i = εi;

– if l0i < 0 < u0i :

yki =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−c1i , if xki < −εi,
∈ [−c1i ,−α1

i ], if xki = −εi,
−α1

i , if − εi < xki < 0,

∈ [−α1
i , α

2
i ], if xki = 0,

α2
i , if 0 < xki < εi,

∈ [α2
i , c

2
i ], if xki = εi,

c2i , if xki > εi.

Hence, DCA applied on (Pdc) can be described as follows.

Algorithm 1 (DCA applied on (Pdc)):

• Initialization: Let x0 ∈ R
n and ε be a sufficiently small positive number;

iteration k ←− 0.
• Repeat:
� Compute yk ∈ ∂h(xk) as indicated above.
� Solving the convex program (14) to obtain xk+1.
� k ←− k + 1

• Until: |f(xk+1)− f(xk)| ≤ ε.

4 A Hybrid Branch and Bound-DCA Algorithm

In this section we propose a combined B&B-DCA algorithm to globally solve
the problem (P ).

As DCA is a descent and efficient method for nonconvex programming, DCA
will be used to improving upper bounds for ω in B&B scheme while lower bounds
will be provided by solving relaxation problems constructed over the rectangle

R =
n∏

i=1

[li, ui], subsets of R0, at each iteration.

4.1 Lower Bounding

A lower bound for φ on C ∩ R :=
n∏

i=1

[li, ui] ⊂ R0 can be determined by the

following way. Let Bi = [li, ui], i = 1, . . . , n. A convex underestimator of the
objective function φ over the domain C ∩R can be chosen as follows (since φ is
separable):

φ̃R(x) =

n∑

i=1

φ̃Bi(xi) (15)

where φ̃Bi(xi) is defined by the following way:



38 P. Viet-Nga, H.A. Le Thi, and P.D. Tao

– if li < ui < 0, let φ̃Bi(xi) = βi − α1
ixi;

– if 0 < li < ui, let φ̃Bi(xi) = βi + α2
ixi;

– if li < ui = 0, φ̃Bi(xi) =
(

βi

li
− α1

i

)
xi;

– if 0 = li < ui, let φ̃Bi(xi) =
(

βi

ui
+ α2

i

)
xi;

– if li < 0 < ui,

φ̃Bi(xi) =

⎧
⎨

⎩

(
βi

li
− α1

i

)
xi, xi ≤ 0

(
βi

ui
+ α2

i

)
xi, xi ≥ 0.

Hence, solving the convex program

η(R) = min{φ̃R(x) : x ∈ C ∩R} (16)

provides a point xR ∈ C satisfying

η(R) = φ̃R(x
R) ≤ min{φ(x) : x ∈ C ∩R},

i.e. η(R) is a lower bound for φ over C ∩R.

4.2 Upper Bounding

Since xR is a feasible solution to (P ), φ(xR) is an upper bound for the global
optimal value ω of (P ). To use DCA for finding a better upper bound for ω, we
will construct a DC approximation problem min{f(x) : x ∈ C ∩R} of (P ) over
C ∩R by the same way mentioned in section 3.1 and launch DCA from xR for
solving the corresponding DC approximation problem. Note that we does not
restart DCA at every iteration of B&B scheme but only when φ(xR) is smaller
than the current upper bound.

4.3 Subdivision Process

Let Rk be the rectangle to be subdivided at iteration k of the B&B algorithm
and xRk be an optimal solution of the corresponding relaxation problem of (P )
over C ∩Rk. We adopt the following rule of bisection of Rk: Choose an index i∗k
satisfying

i∗k ∈ argmax
i
{φi(xRk

i )− φ̃i(xRk
i )}

and subdivide Rk into two subsets:

Rk1 = {v ∈ Rk : vi∗k ≤ xRk

i∗k
}, Rk2 = {v ∈ Rk : vi∗k ≥ xRk

i∗k
}.

We are now in a position to describe our hybrid algorithm for solving (P ).
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4.4 Hybrid Algorithm

Algorithm 2 (BB-DCA):

• Initialization: Compute the first bounds l0i , u
0
i for variables xi and the first

rectangleR0 =
n∏

i=1

[l0i , u
0
i ]. Construct the convex underestimator function φR0

of φ over R0 then solve the convex program

min{φ̃R0(x) : x ∈ C ∩R0} (R0cp)

to obtain an optimal solution xR0 and the optimal value η(R0).

Launch DCA from xR0 for solving the corresponding DC approximation
problem (Pdc). Let x

R0 be a solution obtained by DCA.

Set R0 := {R0}, η0 := η(R0), ω0 := φ(xR0).

Set x∗ := xR0 .

• Iteration k = 0, 1, 2, . . . :

k.1 Delete all R ∈ Rk with η(R) ≥ ωk. Let Pk be the set of remaining
rectangles. If Pk = ∅ then STOP: x∗ is a global optimal solution.

k.2 Otherwise, select Rk ∈ Pk such that

ηk := η(Rk) = min{η(R) : R ∈ Pk}

and subdivide Rk into Rk1 , Rk2 according to the subdivision process.

k.3 For each Rkj , j = 1, 2, construct relaxation function φ̃Rkj
, and solve

min{φ̃Rkj
(x) : x ∈ C ∩Rkj} (Rkj cp)

to obtain xRkj and η(Rkj ).

If φ(xRkj ) < ωk, i.e., the current upper bound is improved on rectangle
Rkj then construct a DC approximation problem for (P ) over C ∩ Rkj

by replacing φ with DC function fRkj
and launch DCA from xRkj for

solving

min{fRkj
(x) = gRkj

(x) − hRkj
(x) : x ∈ C ∩Rkj}. (RkjDC)

Let xRkj be a solution obtained by DCA. Let

γk = min{φ(xRkj ), φ(xRkj )}.

k.4 Update ωk+1 and the best feasible solution known so far x∗.
k.5 Set Rk+1 = (Pk \Rk)

⋃{Rk1 , Rk2} and go to the next iteration.
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5 Conclusion

We have rigorously studied the model and solution methods for solving a hard
portfolio selection problem where the total transaction cost function is noncon-
vex. Attempting to use DC programming and DCA, an efficient approach in
nonconvex programming, we construct an appropriate DC approximation of the
objective function, and then investigate a DCA scheme for solving the resulting
DC program. The DCA based algorithm is quite simple: each iteration we have
to minimize a linear function under linear and convex quadratic constraints for
which the powerful CPLEX solver can be used. To get a global minimizer of
the original problem we combine DCA with a Branch and Bound scheme. We
propose an interesting way to compute lower bounds that leads to the same
type of convex subproblems in DCA, say linear program with additional convex
quadratic constraints. In the next step we will implement the algorithms and
study the computational aspects of the proposed approaches.
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