Numerical Solutions of Partial Diffirential Equations

Thu Huyen Dao

25 November 2013

Thu Huyen Dao Numerical Solutions of Partial Diffirential Equations

(4月) (4日) (4日)

Table of contents

2 Numerical Scheme

Thu Huyen Dao Numerical Solutions of Partial Diffirential Equations

- 4 回 2 - 4 □ 2 - 4 □

Table of contents

2 Numerical Scheme

- - 4 回 ト - 4 回 ト

Figure: Pressurized Water Reactor

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Table of contents

- - 4 回 ト - 4 回 ト

Finite volume discretisation

$$\frac{\partial U}{\partial t} + \nabla \cdot (\mathcal{F}(U)) = 0 \tag{1}$$

Integrating (1) over C_i

$$\frac{\partial}{\partial t} \left(\int_{C_i} U(x,t) \, \mathrm{d}\vec{x} \right) + \sum_{j \in N(i)} \int_{\partial C_{ij}} \mathcal{F}(U) \cdot \vec{n_{ij}} \, \mathrm{d}s = 0 \qquad (2)$$

Set $U_i(t) = \frac{1}{v_i} \int_{C_i} U(x, t) dx$, we have $\frac{\partial}{\partial t} \left(\int_{C_i} U(x, t) d\vec{x} \right) \cong v_i \frac{\partial U_i(t)}{\partial t} \cong v_i \frac{U_i^{n+1} - U_i^n}{\Delta t}$

- 4 同 6 4 日 6 4 日 6

3

Finite volume discretisation

We obtain the numerical scheme

$$\frac{U_i^{n+1} - U_i^n}{\Delta t} + \sum_{j \in N(i)} \frac{1}{v_i} \overrightarrow{\Phi}_{ij} s_{ij} = 0$$

with the numerical flux: $\overrightarrow{\Phi}_{ij} = \frac{1}{s_{ij}} \int_{\partial C_{ij}} \mathcal{F}(U) . \vec{n_{ij}} \, \mathrm{d}s$ Usually, the numerical flux $\vec{\Phi}_{ij}$ is defined by solving exactly/ approximately a Riemann problem:

$$\begin{cases} \frac{\partial U}{\partial t} + \nabla \cdot (\mathcal{F}(U)) = 0 \\ U(x,t) = \begin{cases} U_i & \text{if } x \in C_i \\ U_j & \text{if } x \in C_j \end{cases} \text{ or } \begin{cases} \frac{\partial U}{\partial t} + \frac{\partial \vec{F}_{\vec{n}}}{\partial \vec{n}} \frac{\partial U}{\partial \vec{n}} = 0 \\ U(x,t) = \begin{cases} U_i & \text{if } \vec{x}.\vec{n} < 0 \\ U_j & \text{if } \vec{x}.\vec{n} > 0 \end{cases}$$

・日・ ・ヨ・ ・ヨ・

Finite volume discretisation

And we have the numerical flux $\vec{\Phi}_{ij}$:

$$\overrightarrow{\Phi}_{ij} = rac{F(U_i) + F(U_j)}{2}.ec{n}_{ij} - \mathcal{D}(U_i, U_j) rac{U_j - U_i}{2}$$

Various choices for $\mathcal{D}(U_i, U_j)$:

- $\mathcal{D} = 0$: centered scheme.
- $\mathcal{D} = |A_{Roe,\vec{n}_{ii}}|$: upwind scheme.
- $\mathcal{D} = \rho(A)\mathbf{I}$: Rusanov scheme etc ...

高 とう モン・ く ヨ と

Roe scheme

Replace the exact nonlinear Riemann problem by a approximate problem linearized between cells i and j

$$rac{\partial U}{\partial t} + A(U_i, U_j, \vec{n}_{ij}) rac{\partial U}{\partial \vec{n}_{ij}} = 0$$

 $A_{Roe,\vec{n}_{ij}}(U_i, U_j) = A(U_i, U_j, \vec{n}_{ij})$ satisfies 3 conditions:

- $A_{Roe,\vec{n}_{ii}}$ is diagonalizable
- **2** Consistency: $A_{Roe,\vec{n}_{ij}}(U_i, U_i) = \nabla F_{\vec{n}}(U_i)$
- Sonservation: $(F(U_i) F(U_j)) \cdot \vec{n}_{ij} = A_{Roe, \vec{n}_{ij}} (U_i U_j)$

イロト イポト イラト イラト 一日

Roe scheme

The Roe's numerical flux:

$$\vec{\Phi}_{ij} = \frac{F(U_i) + F(U_j)}{2} \cdot \vec{n}_{ij} - |A_{Roe,\vec{n}_{ij}}| \frac{U_j - U_i}{2}$$
$$= F(U_i) \overrightarrow{n}_{ij} + A_{Roe,\vec{n}_{ij}}(U_j - U_i)$$
$$= F(U_j) \overrightarrow{n}_{ij} - A_{Roe,\vec{n}_{ij}}^+(U_j - U_i)$$

with |A| the absolute value of A, $A^+ = \frac{A+|A|}{2}$, $A^- = \frac{A-|A|}{2}$ The final scheme:

$$\frac{U_i^{n+1}-U_i^n}{\Delta t}+\sum_{j\in N(i)}\frac{s_{ij}}{v_i}A^-_{Roe,\vec{n}_{ij}}(U_j-U_i)=0$$

(日) (四) (王) (王) (王)

The Single-phase Flows

Eq of state: $p = (\gamma - 1)e\rho$.

$$\begin{array}{rcl} & & & \rho : \text{ density} \\ & & & \overrightarrow{q} & & \\ & & & \overrightarrow{q} & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

- T : temperature
- ν : viscosity

同 と く き と く き と

1 1.

• λ : conductivity

2

Numerical Schemes

$$\frac{\partial U}{\partial t} + \nabla \cdot (\mathcal{F}^{conv}(U)) + \nabla \cdot (\mathcal{F}^{diff}(U)) = 0$$
(3)

U the vector of unknown physical quantities $\mathcal{F}^{conv}(U)$ the flux of convection, $\mathcal{F}^{diff}(U)$ the flux of diffusion Finite volume formulation

$$\int_{C_i} \frac{\partial U}{\partial t} \, \mathrm{d}\vec{x} + \sum_{j \in \mathcal{N}(i)} \int_{\partial C_{ij}} \left(\mathcal{F}^{conv}(U) \cdot \vec{n_{ij}} + \mathcal{F}^{diff}(U) \cdot \vec{n_{ij}} \right) \, \mathrm{d}s = 0 \quad (4)$$

Set $U_i(t) = \frac{1}{v_i} \int_{C_i} U(x, t) dx$ and $U_i^n = U_i(n\Delta t)$, we have:

$$\frac{U_i^{n+1} - U_i^n}{\Delta t} + \sum_{j \in N(i)} \frac{s_{ij}}{v_i} (\overline{\Phi^{conv}}_{ij} + \overline{\Phi}_{ij}^{diff}) = 0$$
(5)
(6)

・ロン ・回 と ・ ヨ と ・ ヨ と

Use Roe's scheme of the numerical flux of convection $\overrightarrow{\Phi}_{ii}^{conv}$:

$$\overrightarrow{\Phi}_{ij}^{conv} = \frac{\mathcal{F}^{conv}(U_i) + \mathcal{F}^{conv}(U_j)}{2} . \vec{n}_{ij} + \mathcal{D}\frac{U_j - U_i}{2} \qquad (7)$$

$$= \mathcal{F}^{conv}(U_i) \overrightarrow{n}_{ij} + A^-(U_i, U_j)(U_j - U_i). \qquad (8)$$

with $A^- = \frac{A-D}{2}$ and A is a Roe's matrix. For the numerical flux of diffusion $\overrightarrow{\Phi}_{ij}^{diff}$ on structured meshes:

$$\overrightarrow{\Phi}_{ij}^{diff} = D(U_i, U_j)(U_j - U_i)$$
(9)

Explicit system

$$\frac{U_i^{n+1} - U_i^n}{\Delta t} + \sum_{j \in \mathcal{N}(i)} \frac{s_{ij}}{v_i} \{ (A^- + D)(U^n) \} (U_j^n - U_i^n) = 0$$
(10)

(4回) (注) (注) (注) (注)

Implicit scheme

Implicit non linear system

$$\frac{U_i^{n+1} - U_i^n}{\Delta t} + \sum_{j \in \mathcal{N}(i)} \frac{s_{ij}}{v_i} \{ (A^- + D)(U^{n+1}) \} (U_j^{n+1} - U_i^{n+1}) = 0$$
(11)

We have the equation: f(U) = 0, with:

$$f(U)|_{i} = \frac{U_{i} - U_{i}^{n}}{\Delta t} + \sum_{j \in N(i)} \frac{s_{ij}}{v_{i}} \{ (A^{-} + D)(U_{i}, U_{j}) \} (U_{j} - U_{i})$$

We solve with the Newton iterative algorithm:

$$f'(U^k)(U^{k+1} - U^k) + f(U^k) = 0$$

- 4 同 6 4 日 6 4 日 6

Newton scheme

Solve several linear systems to obtain the required solutions:

$$\begin{aligned} \frac{\delta U_i^{k+1}}{\Delta t} &+ \sum_{j \in \mathcal{N}(i)} \frac{s_{ij}}{v_i} \left[(A^- + D) (U_i^k, U_j^k) \right] \left(\delta U_j^{k+1} - \delta U_i^{k+1} \right) \\ &= -\frac{U_i^k - U_i^n}{\Delta t} - \sum_{j \in \mathcal{N}(i)} \frac{s_{ij}}{v_i} \left[(A^- + D) (U_i^k, U_j^k) \right] (U_j^k - U_i^k), \end{aligned}$$

where $\delta U_i^{k+1} = U_i^{k+1} - U_i^k$. Each Newton iteration requires the numerical solution of the following linear system:

$$\mathcal{A}(\mathcal{U}^k)\delta\mathcal{U}^{k+1} = b(\mathcal{U}^n, \mathcal{U}^k)$$
(12)

where $\mathcal{U} = (U_1, \ldots, U_N)^t$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Table of contents

1 Introduction

2 Numerical Scheme

- 4 回 2 - 4 □ 2 - 4 □

The test cases

- Detonation in a closed box
- Lid driven cavity flows

Figure: Mesh

ヘロン 人間 とくほど 人間 と

Э

Initial data

Detonation problem $\vec{v} = \vec{0}$ $\mathcal{T} = 300K$ Fixed walls 200×200 grid

・ロト ・回ト ・ヨト ・ヨト

3

Initial data

Velocity X 0 0

Lid driven cavity $\vec{v} = \vec{0}$ T = 35K3 fixed walls 1 moving wall 50×50 grid

< □ > < □ > < □ >

Explicit vs Implicit: Lid driven cavity

Figure: cfl 1600 nb time steps 1

イロト イヨト イヨト イヨト

CFL	0.5	100	400	800	1600
Number of time steps	3152	16	4	2	1
Time of computation	155.987	3.55	1.079	0.634	0.34

Upwind vs Centered: Lid driven cavity

Figure: Centered scheme, Stationnary regime

イロト イヨト イヨト イヨト

The centered scheme is much less diffusive and captures the correct solution as opposed to the upwind scheme.

Scaling strategy

- For a better preconditioning of the matrix, off diagonal entries of the matrix must have a small magnitude
- After applying a similarity transformation with a diagonal matrix D_{sca} and D_{sca}^{-1} , all entries of the matrix have the same magnitude.
- Instead of solving system $\mathcal{A}\delta\mathcal{U} = \mathbf{b}$, one can rather solve:

$$\tilde{\mathcal{A}}\delta\tilde{\mathcal{U}}=\tilde{\boldsymbol{b}},\tag{13}$$

where $\tilde{\mathcal{A}} = D_{sca}\mathcal{A}D_{sca}^{-1}$, $\delta \tilde{\mathcal{U}} = D_{sca}\delta \mathcal{U}$ and $\tilde{b} = D_{sca}b$.

- System (13) can be resolved more easily using an ILU preconditioner.
- T.H.Dao, M. Ndjinga, F. Magoules, Comparison of Upwind and Centered Schemes for Low Mach Number Flows, *Finite Volumes for Complex Application VI*, Prague, June 6-10 2011.

Scaling strategy

Figure: Number of GMRES iterations for the upwind scheme, CFL 1000

Figure: Number of GMRES iterations for the centered scheme. Thu Huyen Dao

Figure: Number of GMRES iterations for the upwind scheme, mesh 100×100

Figure: Number of Newton iterations for the centered scheme Numerical Solutions of Partial Diffirential Equations

THANK YOU FOR YOUR ATTENTION!

Thu Huyen Dao Numerical Solutions of Partial Diffirential Equations

イロン イヨン イヨン イヨン