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Transcription Factors and Motifs

/ motif  Transcription Factor




Transcription Factor Binding Sites

0 Every gene contains a regulatory region (RR)
upstream of the transcriptional start site

O Located within the RR are the Transcription
Factor Binding Sites (TFBS), also known as
motifs, specific for a given transcription factor

O A TFBS can be located anywhere within the
Regulatory Region (RR).

O A single TF can regulate multiple genes if those
genes’ RRs contain corresponding TFBS

m Can find regulated genes via knock out
experiments




Problem statement

O Sequence motifs are short, recurring patterns in
DNA/RNA/protein that are presumed to have a biological
function.

O The characterization and localization of motifs is a
fundamental approach to a better understanding of the
structure, function and evolutionary relationships of the
corresponding genes or proteins.

m Eg.: they indicate sequence-specific binding sites for
proteins such as nucleases and transcription factors (TF).

m Others are involved in important processes at the RNA
level, including ribosome binding, MRNA processing
(splicing, editing, polyadenylation) and transcription
termination.
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Identifying Motifs: Complications

O We do not know the motif sequence
m May know its length

0O We do not know where it is located relative to
the genes start

0 Motifs can differ slightly from one gene to the
next
m Non-essential bases could mutate...

0 How to discern functional motifs from random
ones?




Motifs and Transcriptional Start Sites

ATCCCG gene
TTCCGG gene

ATCCC gene

ATGCCG gene

ATGCCC gene




Defining Motifs

O To define a motif, lets say we know where the motif
starts in the sequence

O The motif start positions in their sequences can be
represented as s = (54,55,S3,.--,S¢)

motif start index
S gene start

L
Sq =

1
0
]




Motifs: Profiles and Consensus

O Line up the patterns by their

aGgtacTt J
CcAtacgt start indexes
Alignment acgtTAgt
acgtCCcAt s =(S,S, ..., S
Ccgtacgg (1! 27 rt)
0O Construct matrix profile with
frequencies of each
A 30103110 nucleotide in columns
Profile C 24001400
G 01400031 —
T 00051014 U Consensus nucleotide in each

position has the highest score
In column

m  Think of consensus as an
“ancestor” motif, from
which mutated motifs
emerged

consensus ACGTACGT




Evaluating Motifs

O We found the consensus sequence, but how
“good” is this consensus?

0 Need to introduce a scoring function




Some Notations

O & - number of sample DNA sequences
O n - length of each DNA sequence
0O DNA - sample of DNA sequences (t x n array)

O [ - length of the motif (Fmer)
O s; - starting position of an ~mer in sequence j

O s=(s;, S,...S;) - array of motif's starting
positions




Example

cctgatagacgctatctggctatccaGgtacTtaggtcctctgtgecgaatctatgegtttccaaccat

agtactggtgtacatttgatCeAtacgthcaccggcaacctgaaacaaacgctcagaaccagaagtgce

aadcgtTAgtgcaccctctticttecgtggitctggccaacgagggctgatgtataagacgaaaatttt

agtctccgatgtaagtcatpgctgtaactattacctgccaccectattacatcttacglfCecAtataca

ctgttatacaacgcgtcgtggecggggtatgcgttttggtcgtcgtacgectcgatZgttaCegtaggiGe )
Y
n==69

S 53:3 52:2] 5]:26 54:55 55:5é




Scoring Function

O Givens = (s;, ... s;) and DNA:

Score(s,DNA) =2, max count(k,i)

i=1 ke{AT,C,G}
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The Motif Finding Problem

O If starting positions s=(s;, s,,... S;) are given,
the problem is easy even with mutations in the
sequences because we can simply construct
the profile to find the motif (consensus)

O But... the starting positions s are usually not
given. How can we align the patterns and
compute the “best” profile matrix?




The Motif Finding Problem: Formulation

The Motif Finding Problem: Given a set of DNA
sequences, find a set of F~mers, one from each
sequence, that maximizes the consensus score

O Input: A t x n matrix of DNA, and [ the length
of the pattern to find

O Output: An array of t starting positions
s = (s;, S,, ... S;) maximizing Score(s,DNA)




The Motif Finding Problem: Brute Force Solution

m Compute the scores for each possible
combination of starting positions s

m The best score will determine the best profile
and the consensus pattern in DNA

m The goal is to maximize Score(s,DNA) by
varying the starting positions s, where:

=1, .. t




Pseudocode for Brute Force Motif Search

BruteForceMotifSearch(DNA, t, n, [)

bestScore € 0O

for each s=(s,,s,, ..., s)from (1,1 ...1)
to (n-+1, ..., n-(+1)

if (Score(s,DNA) > bestScore)
bestScore & score(s, DNA)
bestMotif < (s,,5,, ..., s)
return bestMotif




Brute Force Approach: Running Time

O Varying (n - £ + 1) positions in each of t
sequences, we're looking at (n = [+ 1)t sets of
starting positions

0 For each set of starting positions, the scoring
function makes [ operations, so complexity is [
(n = £+ 1)t=0(/n?)




Running Time of BruteForceMotifSearch

O That means thatfort=8, n = 1000, /= 10
m  Must perform 7.322E+25 computations

m  Assuming each computation takes a cycle
on a 3 GHz CPU, it would take 7.33 billion

years to search all the possibilities
O This algorithm is not practical

O Lets explore some ways to speed it up




The Median String Problem

O Given a set of t DNA sequences find a pattern
that appear in all t sequences with the
minimum number of mutations

O This pattern will be the motif




Hamming Distance

O Hamming distance:

m dy(v,w) is the number of nucleotide pairs
that do not match when v and w are
aligned. For example:

d AAAAAAA,
ACAAAC) = 2




Total Distance

m For each DNA sequence i, compute all dy(v,

Xx), where x is an Fmer with starting position
s, (1<s, < n-[(+1)

m JotalDistance(v,DNA) is the sum of the

minimum Hamming distances for each
DNA sequence 1




Total Distance: An Example

O Example 1, given v = “acgtacgt” and s

dy(v, x) =0 \\\\*.acgtacgti

dy(v, X) =0 "“*bacgtacgt'

agtactggtgtacatttgatacgtacgtacaccggcaacctgaaacaaacgctcagaaccagaagtgc

acgtacgq
aa%cgtacgﬁgcaccctctttcttcgtggctctggccaacgagggctgatgtataagacgaaaatttt

dy(v, x)=0 dy(v, X) =0—~— .acgtacgt'

agcctccgatgtaagtcatagctgtaactattacctgccacccctattacatcttacgtacgtataca

_______________

v is the sequence in red, x is the sequence in blue

O TotalDistance(v,DNA) =0




Total Distance: Another Example

O Example 2, given v = “acgtacgt” and s

AV, X) =1~ e ,

:acgtacgti

cctgatagacgctatctggctatdcacqtacAtaggtcctctgtgcgaatctatgcgtttccaaccat

______________

dy(v, x) =0 —s ;acgtacgt

_______________

///aQQAgthgtbcaccctctttcttcgtggctctggccaacqangctqatgtataagacgaaaatttt

______________

dy(v, x) =2 dy(v,x)=0 \Aiacgtacgti
agcctccgatgtaagtcatagctgtaactattacctgccaccectattacatcttacgtacgtataca
dulv, X) =1 — Hogtact

ctgttatacaacgcgtcatggcggggtatgcgttttggtcgtcgtacgctcgatcgtt%acgtaGgﬁc

vis the sequence in red, x is the sequence in blue

O TotalDistance(vDNA) =1 +2 +1 =4




The Median String Problem: Formulation

The Median String Problem:

0O Given a set of DNA sequences, find a median
string

O Input: A t x n matrix DNA, and /[, the length of
the pattern to find

O Output: A string v of [ nucleotides that
minimizes TotalDistance(v,DNA) over all
strings of that length




Motif Finding Problem == Median String Problem

O The Motif Finding and Median String problems
are computationally equivalent

O Proof:

Need to show that minimizing TotalDistance
is equivalent to maximizing Score




We are looking for the same thing

[
A

= =
aGgtacTt
CcAtacgt

Alignment acgtTAgt
acgtCcAt
CcgtacggegaG

A 30103110

Profile C 24001400
G 01400031

T 00051014

Consensus acgtacgt
Score 3+4+4+5+3+4+3+4
TotalDistance 2+1+1+0+2+1+2+1
Sum 55555555

O

O

O

At any column i
Score; + TotalDistance, = t

Because there are | columns
Score + TotalDistance = [ * t

Rearranging:

Score= [ *t - TotalDistance

O

[* t is constant the minimization
of the right side is equivalent to
the maximization of the left side




The Motif FInding Problem vs. Ihe
Median String Problem

O Why bother reformulating the motif finding
problem into the median string problem?

m The Motif Finding Problem needs to examine
all the combinations for s. Thatis (n - (+ 1)t
combinations!!!

m The Median String Problem needs to examine
all 4 combinations for v. This number is
relatively smaller




Brute Force Median String Algorithm

1. MedianStringSearch (DNA, t, n, ()
bestWord < AAA...A

bestDistance & o
for each Fmer s from AAA..Ato TTT...T

if TotalDist(s,DNA) < bestDistance
bestDistance< TotalDist(s,DNA)
bestWord < s
5. return bestWord
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Search Trees

O Group candidate sequences by their prefixes




Moving through the Search Trees

O Once the tree is built, we need to design
algorithms to move through the tree

O Four common moves in a search tree that we
are about to explore:

m Move to the next leaf

m Visit all the leaves

m Visit the next node

m Bypass the children of a node




Example

O Moving to the next vertex:

AP AV AP A

Current Location




Example

0 Moving to the next vertices:

Location after 5
next vertex moves




Bypass Move: Example

O Bypassing the descendants of “2-";

Current Location

Aeadbs Ao b




Example

O Bypassing the descendants of “2-";

Next Location @

f %11 12 3 14 21 | 22 \ 23 32 33\ 34 \41 4




Branch and Bound Applied to Median
String Search

O Note that if the total distance for a
prefix is greater than that for the
best word so far: r00t

TotalDistance (prefix, DNA) + ZERO
> BestDistance S1

there is no use exploring the
remaining part of the word

O We can eliminate that branch and

BYPASS exploring that branch
further




Bounded Median String Search

© % NV KRWDN =

BranchAndBoundMedianStringSearch(DNA, t.n.f[)
s<(1,...,1)
bestDistance <
<1
while / > 0
ifi<r
prefix € nucleotide string of s
optimisticDistance < TotalDistance(prefix, DNA)
if optimisticDistance > bestDistance
(s, /) € Bypass(s,/, ; 4)
else
(s, 7) € NextVertex(s, 7, [, 49

else
word < nucleotide string for s
if TotalDistance(s,DNA) < bestDistance
bestDistance < TotalDistance(word, DNA)
bestWord & word
(s,7) € NextVertex(s,it, 49
return bestWord




Two classes of sequence motif finding prob.

O Quorum Planted Motif Search (gPMS):
Given n input strings s4,... ,s, of length m
each, three integer parameters |, d and g, find
all the (l,d,q)-motifs of the input strings.

m A string M of length | is called an (I, d, g)-motif
of the strings if there are at least q out of the n

strings such that the Hamming distance between
each one of them and M is no more than d.

0O Planted Motif Search (PMS): a special case
of the gPMS problem when g=n.
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PMS algoritms

O An exact PMS algorithm always finds all the
(I, d)-motifs present in the input sequences.
m NP-hard
m Algorithms: PMS6, Pampa, PMSPrune, RISSOTO

O Typically, approximate PMS algorithms employ
heuristics such as local search, Gibbs sampling,
expectation optimization, etc.

m usually tend to be faster

m Algorithms: MEME, Projection, GibbsDNA,
PairMotif+, etc.
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gPMS algorithms

O The larger the values of | and d that a gPMS
algorithm can handle, the more accurate will
be the motifs it finds.

0 Is harder than the PMS problem.

O exact algorithms:
m gPMSPrune (2007): I=17, d=5, gq=n/2;
m gPMS7 (6/2012): can solve larger instances, 10
times faster, also best for PMS problem.

m PairMotif (10/2012): pattern-driven algorithm
for (I,d) DNA motif search.
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gdPMSPrune - pseudo-code

O For any I-mer X, represents it's d-neighborhood
as a tree T4(x)
Algorithm gPMSPrune

For each xgus,1<i=n—g+1 do:
Traverse the tree 7 4(x) n a depth-first manner. At each node

(1,p), do the following steps.

1.

11.

111

Incrementally compute dg(f,5;) from its parent for
| <j<nj#i.

Let g’ be the number of input strings 5; such that di(1,57) <d.
It g =g—1, output t.

e

Let ¢” be the number of mmput strings §; such that
du(t.s;)=2d —dy(t.x). It g" <g—1, then prune the subtree

rooted at node (7,p). Otherwise, explore its children.

Pham Quang Diing 42



gdPMSPrune - time complexity

O O((n-g+1)nm2N(l,d))

0 Trong do:

0010

[0fl10 | [o0B0

0011 |

1010

EE

1100 | | 1110

NEd)= 4, (f)ﬂﬂ —1y

1000 | | 1011 |

1004

Figure 1. Traverse the tree in qPMSPrune. 7:(1010) with alphabet
2={0,1}. The value of p at each node is the location of its shaded
letter. For example, p=1 at node (010, p=4 at node 0W011.

Pham Quang Diing
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qPMS/ improves the runtime of gPMSPrune

O reduce the time taken for computing Hamming
distances dH(t,s;) in step (1) of gPMSPrune.

m the operation takes at least Q(nm) time in
Algorithm gPMSPrune because it considers every
I-mer in each input string s;.

m some |-mers can be ignored without changing the
result since they just need to count g’ and q".
= al-merzin s;can be ignored if d.«(t,z)>2d-d.(t,x).

m The runtime of the operation now depends on the
sizes of the lists of surviving |-mers.
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Table 3. Time comparison of different algorithms on the
challenging instances of protein sequences for the special

case - PMS Problem.

Algorithm (11.,5] (13.6) (15,7] (17.8) (19,9)
qP M57 1 m 19 m 6.8 m 7.5 m
aF M5Prunel 4.5 m 24 m 17 h -
gP M5Prune 12 m 16 h - -

The alphabet size || =20, n=20, m =600, and g=n=20,

Pham Quang Diing
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|
Table 6. Results on real datasets for transcription factor-binding sites discovery.

Data Predicted Motifs Matched Binding 5Sites
mus05r AGAGGAAAAAAAAAAGGAG 5 GOAAAAACAAAGGTAATG
mus07r CTGCCCACCCTOTGCAALCCC 54 CCCAACACCTGUTGLCTGAGLCC
rmus11r AGGLLGLLLEGLGLAGLG 53 GLCGLCGGGLGTGGEGLTGAG

53 GEGLGEGGEGEGEGEGECGGEGEGC
5 GIGLGGLGLGEGEGECCTT
So GAACAGGAAGTGAGGLGG

hm03r AAAAGAAAAAAAAATAAACAA 5 TCAAGCAAAAAAAATAAATAAATACCTATGCAA
53 ACAAGCAAACAAAATAAATATCTGTGCAATAT
53 TATGAGCAAACAAAATAAATACCTGTGCAA

hirmO8r COITGCAGTCCCCTTCAT 5100 TATGGTCATGACGTCTGACAGAGT
him19r CCOTTCCACCACCCACAG 5y CACTTITAGCTCCTCCCCCCA
him26r COCCCCGUCTCCCGCTCCC 5y CCCCGCCTCAGGCTCCCGGGEGE

§7 CTCAGCCTGCCCCTCCCAGGGATTAAG
S GUGUCGAGGCGTCCCOGAGGLGT

The datasets are from mouse (resp. human) if their names start with “mus"” (resp. “hm").
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Thanks for your attention!
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