

ON THE INTUITIONISTIC FUZZY DATABASE: Theories and Applications

Dr. Nguyen Van Dinh

Dept. of Applied Maths – Informatics Faculty of Information Technology, Vietnam National University of Agriculture

Hanoi - 2014

Outline

Introduction.

- Intuitionistic Fuzzy Set.
- Intuitionistic Fuzzy Relations.
- Intuitionistic Fuzzy Database.
- Conclusions.

1. Introduction

Fuzzy set Theory introduced by L. A. Zadeh in 1965 [6], in which has important notion 'Fuzzy set and membership function':

Let a set E be fixed. A Fuzzy Set (FS) A in E is an object having the form:

 $A = \{ \langle x, \mu_A(x) \rangle \mid x \in E \}$

where $\mu_A : E \rightarrow [0, 1]$ is called the membership function for the fuzzy set A.

A fuzzy database (FDB) based on similarity relation was introduced by Buckles and Petry is a generalization of the classical relational database [5].

1. Introduction (cont.)

- The Theory of Intuitionistic Fuzzy Set (IFS) introduced by Atanassov is a generalization of of the fuzzy set theory.
- □ IFS theory has been applied in different areas:
 - Logic programming [4]
 - Decision Making Problems [2]
 - Optimization Problem [1]
 - Medical Diagnosic [3], ...
- In particular, IFS is used in the construction of Intuitionistic fuzzy databases, is based on Intuitionistic Fuzzy Relations (IFR).

2. Intuitionistic Fuzzy Set

- Definition 2.1
 - Let a set E be fixed. An IFS A in E is an object having the form:

 $A = \{ < x, \mu_A (x), \nu_A (x) > | x \in E \}$

where $\mu_A : E \to [0, 1]$ and $\nu_A : E \to [0, 1]$ define the degree membership and non-membership of the element $x \in E$ to the set A, and for every $x \in E$ then:

$$0 \le \mu_A (x) + \nu_A (x) \le 1.$$

- The amount $\pi_A(x) = 1 (\mu_A(x) + \nu_A(x))$ is called the hesitation part.
- Example 2.1. Voting can be a good example of IFS. For each candidate x_i , voters may be divided into 3 group of those who: vote for, vote against and refusal of voting. Let $E = \{x_1, x_2, x_3\}$, then an IFS A in E may be:

A = {
$$, 0.8,0.1>, $, 0.7,0.2>, $, 0.5,0.4>}, or in other notation:$$$$

$$A = \{\frac{(0.8,0.1)}{x_1}; \frac{(0.7,0.2)}{x_2}; \frac{(0.5,0.4)}{x_3}\}$$

2. Intuitionistic Fuzzy Set (cont.)

Definition 2.2

If A and B are two IFS of the set E, then:

$$A \subset B \text{ iff } \forall x \in E, [\mu_A(x) \le \mu_B(x) \text{ and } \nu_A(x) \ge \nu_B(x)]$$

$$A = B \text{ iff } \forall x \in E, [\mu_A(x) = \mu_B(x) \text{ and } \nu_A(x) = \nu_B(x)]$$

$$\bar{A} = \{ < x, \nu_A(x), \mu_A(x) > | x \in E \}$$

$$A \cap B = \{ < x, \min(\mu_A(x), \mu_B(x)), \max(\nu_A(x), \nu_B(x)) > | x \in E \}$$

$$A \cup B = \{ < x, \max(\mu_A(x), \mu_B(x)), \min(\nu_A(x), \nu_B(x)) > | x \in E \}$$

• Obviously every fuzzy set A has the form: $A = \{ < x, \mu_A(x), \mu_{A^c}(x) > | x \in E \}$

Example 2.2

Let
$$A = \{\frac{(0.8,0.1)}{x_1}; \frac{(0.7,0.2)}{x_2}; \frac{(0.5,0.4)}{x_3}\}$$
 and $B = \{\frac{(0.7,0.2)}{x_1}; \frac{(0.8,0.1)}{x_2}; \frac{(0.6,0.2)}{x_3}\}$ then:
• $A \cup B = \{\frac{(0.8,0.1)}{x_1}; \frac{(0.8,0.1)}{x_2}; \frac{(0.6,0.4)}{x_3}\}$, $A \cap B = \{\frac{(0.7,0.2)}{x_1}; \frac{(0.7,0.2)}{x_2}; \frac{(0.5,0.4)}{x_3}\}$
• $\overline{A} = \{\frac{(0.1,0.8)}{x_1}; \frac{(0.2,0.7)}{x_2}; \frac{(0.4,0.5)}{x_3}\}$.

3. Intuitionistic Fuzzy Relations

Definition 3.1

Let X and Y be two sets. An Intuitionistic Fuzzy Relation (IFR) R from X to Y is an IFS on $X \times Y$, that characterized by membership function μ_R and non-membership function v_R .

An IFR R from X to Y denoted by $R(X \rightarrow Y)$ and defined by:

 $R = \{ < (x, y), \mu_R (x, y), \nu_R (x, y) > | x \in X, y \in Y \}$

where: $\mu_R : X \times Y \rightarrow [0, 1]$ and $\nu_R : X \times Y \rightarrow [0, 1]$, satisfy: $\mu_R (x, y) + \nu_R (x, y) \leq 1$

Definition 3.2

Let $Q(X \rightarrow Y)$ and $R(Y \rightarrow Z)$ be two IFRs. The max-min-max composition $R \circ Q$ is the intuitionistic fuzzy relation from X to Z, defined by the membership function $\mu_{R \circ O}$ and non-membership function $v_{R \circ O}$:

 $\mu_{Q\circ R}(\mathbf{x}, \mathbf{z}) = \bigvee_{y} \left[\mu_{Q}(\mathbf{x}, \mathbf{y}) \land \mu_{R}(\mathbf{y}, \mathbf{z}) \right] \quad \forall (\mathbf{x}, \mathbf{z}) \in \mathbf{X} \times \mathbf{Z} \text{ and } \forall \mathbf{y} \in \mathbf{Y}.$

 $\nu_{Q \circ R}(\mathbf{x}, \mathbf{z}) = \bigwedge_{y} [\nu_{Q}(\mathbf{x}, \mathbf{y}) \lor \nu_{R}(\mathbf{y}, \mathbf{z})] = \forall (\mathbf{x}, \mathbf{z}) \in \mathbf{X} \times \mathbf{Z} \text{ and } \forall \mathbf{y} \in \mathbf{Y}.$

3. Intuitionistic Fuzzy Relations (cont.)

Definition 3.3

• An IFR $R(X \rightarrow X)$ (also called IFR R on X), is said to be: (i) Reflexive: iff $\forall x \in X$, $\mu_R(x, x) = 1$, (ii) Symmetric: iff $\forall x_1, x_2 \in X$, $\mu_R(x_1, x_2) = \mu_R(x_2, x_1)$ and $v_R(x_1, x_2) = v_R(x_2, x_1)$.

(iii) Transitive: iff $R^2 \subseteq R$, where $R^2 = R \circ R$

- An IFR R on X is called Intuitionistic Tolerance relation if R is reflexive and symmetric.
- An IFR R on X is called Intuitionistic Similarity relation if R is reflexive and symmetric and transitive.

Definition 3.4

Let A be an IFS of the set E. For $\alpha \in [0, 1]$, the α -cut of A is the scisp set A_{α} defined by:

$$A_{\alpha} = \{ x : x \in E, \text{ either } \mu_A (x) \ge \alpha \text{ or } \nu_A (x) \le 1 - \alpha \}.$$

or: $A_{\alpha} = \{ x : x \in E, \nu_A (x) \le 1 - \alpha \}.$

(note that $\mu_A(x) \ge \alpha$ ensures $\nu_A(x) \le 1 - \alpha$ but not conversely.)

3. Intuitionistic Fuzzy Relations (cont.)

Definition 3.5

Let T be an intuitionistic fuzzy tolerance relation on X, given $\alpha \in [0, 1]$, then:

- two elements $x, y \in X$ are α -similar iff $v_R(x, y) \le 1 \alpha$, denoted by $xT_{\alpha}y_{\alpha}$.
- two elements $x, z \in X$ are α -tolerate iff either $xT_{\alpha}z$ or there exists a sequence $y_1, y_2, ..., y_r \in X$ such that $xT_{\alpha}y_1T_{\alpha}y_2... y_rT_{\alpha}z$, denoted $x T_{\alpha}^+ z$
- Lemma 3.1
 - If T be an intuitionistic fuzzy tolerance relation on X, then T_{α}^{+} is an equivalence relation. For any $\alpha \in [0, 1]$, T_{α}^{+} partitions X into equivalence classes.
 - If *T* be an intuitionistic fuzzy similarity relation on *X*, then T_{α} is an equivalence relation, for any $\alpha \in [0, 1]$.
- Lemma 3.2

If T be an intuitionistic fuzzy similarity relation on X , then for any $\alpha \in [0, 1]$,

 T_{α} and T_{α}^{+} generate identical equivalence classes.

3. Intuitionistic Fuzzy Relations (cont.)

Example 3.1

- Consider the Intuitionistic Fuzzy relation T on $X = \{x_1, x_2, x_3, x_4\}, T =$
- Easy to see that, T is an

intuitionistic fuzzy tolerance relation.

• It can be computed that:

	x_1	x_2	x_3	x_4
x_1	(1, 0)	(.8, .1)	(.6, .2)	(.3, .4)
x_2	(.8, .1)	(1, 0)	(.4, .5)	(.5, .3)
x_3	(.6, .2)	(.4, .5)	(1, 0)	(.6, .3)
x_4	(.3, .4)	(.5, .3)	(.6, .3)	(1, 0)

for $\alpha = 1.0$, the partition of X determined by T_{α}^+ is: $\{\{x_1\}, \{x_2\}, \{x_3\}, \{x_4\}\}$. for $\alpha = 0.9$, the partition of X determined by T_{α}^+ is: $\{\{x_1, x_2\}, \{x_3\}, \{x_4\}\}$.

for $\alpha = 0.8$, the partition of X determined by T_{α}^+ is: { { x_1, x_2, x_3 }, { x_4 } }.

for $\alpha = 0.7$, the partition of X determined by T_{α}^+ is: { { x_1, x_2, x_3, x_4 } }.

4. Intuitionistic Fuzzy Database

Definition 4.1

 An intuitionistic fuzzy database (IFDB) relation R is a subset of the cross product:

$$2^{D_1} \times 2^{D_2} \times \cdots \times 2^{D_m},$$

- An intuitionistic fuzzy tuple of R has the form $t_i = (d_{i1}, d_{i2}, ..., d_{im})$, where $d_{ij} \subseteq D_j$.
- For each domain D_j, given an IF tolerance relation T_j, defined by the membership function:

$$\mu_{T_j}: D_j \times D_j \to [0, 1]$$

and non-membership function:

$$\nu_{T_j}: D_j \times D_j \to [0, 1]$$

Example 4.1

- Consider a relation scheme of VEHICLE (Type , Color , Price).
- Domain(Type) = D₁ = {sportcar, sedan, bicycle, truck, motobike},
- Domain(Color)= D₂ = {Blue, Green, Red},
- Domain(Price) = D₃ = {Very Expensive, Expensive, Modest, Affordable, Cheap}
- Now consider the intuitionistic fuzzy tolerance relation T₂ on D₂;
- We have IFDB on VEHICLE scheme with respect to intuitionistic fyzzy tolerance relation T₂, is given by:

T ₂	В	G	R
Blue (B)	(1, 0)	(0.7,0.2)	(0, 1)
Green (G)	(0.7, 0.2)	(1, 0)	(0, 1)
Red (R)	(0, 1)	(0, 1)	(1, 0)

ſ	Tuple #	Туре	Color	Price
	t1	{sport car}	{Blue, Green}	{very expensive}
	t ₂	{sedan}	{Blue}	{modest}
	t3	{motorbike}	{Green}	{cheap}
	t4	{sedan}	{Red}	{afforable}
	t ₅	{sport car}	{Red}	{expensive}

Hypothetical case study for an application in the fight against crime

- Supose that one murder has taken place at an area in a deep, dark line.
- The police suspects that the murderer is also from the same area.
- Listening to the eye-witness: murderer has more or less full big hair coverage, more or less curly hair texture and he has moderately large build.
- Police refer to a data file of all the suspected criminals of the that area, the information table with attributes 'HAIR COVERAGE', HAIR TEXTURE' and 'BUILD' is named 'CRIMINAL DATA' and given as below:

* CRIMINAL DATA

NAME	HAIR COVERAGE	HAIR TEXTURE	BUILD
Arup	Full Small(FS)	Stc.	Large
Boby	Rec.	Wavy	Very Small(VS)
Chandra	Full Small(FS)	Straight(Str.)	Small(S)
Dutta	Bald	Curly	Average(A)
\mathbf{Esita}	Bald	Wavy	Average(A)
Falguni	Full Big(FB)	Stc.	Very Large(VL)
Gautom	Full Small	Straight	Small(S)
Halder	Rec.	Curly	Average(A)

13

Now, consider the intuitionistic fuzzy
tolerance relations:

Relation T_1 on the domain D_1 of attribute 'HAIR COVERAGE', where:

 $D_1 = \{FB, FS, Rec., Bald\}$

- Relation T_2 on the domain D_2 of attribute 'HAIR TEXTURE', where: $D_2 = \{$ Str., Stc., Wavy, Curly $\}$

	FB	FS	Rec.	Bald
FB	(1, 0)	(.8, .1)	(.4, .4)	(0, 1)
\mathbf{FS}	(.8, .1)	(1, 0)	(.5, .4)	(0, .9)
Rec.	(.4, .4)	(.5, .4)	(1, 0)	(.4, .4)
Bald	(0, 1)	(0, .9)	(.4, .4)	(1, 0)

	Str.	Stc.	Wavy	Curly
Str.	(1, 0)	(.7, .3)	(.2, .7)	(.1, .7)
Stc.	(.7, .3)	(1, 0)	(.3, .4)	(.5, .2)
Wavy	(.2, .7)	(.3, .4)	(1, 0)	(.4, .4)
Curly	(.1, .7)	(.5, .2)	(.4, .4)	(1, 0)

Relation T_3 on the domain D_3		VL	L	А	S	VS
of attribute 'BUILD', where:	VL	(1, 0)	(.8, .2)	(.5, .4)	(.3, .6)	(0, 1)
	L	(.8, .2)	(1, 0)	(.6, .4)	(.4, .5)	(0, .9)
$D_3 = \{VL, L, R, S, VS\}$	Α	(.5, .4)	(.6, .4)	(1, 0)	(.6, .3)	(.3, .6)
	S	(.3, .6)	(.4,5)	(.6, .3)	(1, 0)	(.8, .2)
	VS	(0, 1)	(0, .9)	(.3, .6)	(.8, .2)	(1, 0)

- Now, the job is to find out a list of the Criminals who resemble with more or less full big hair coverage, more or less curly hair texture and moderately large build.
- The job can be done with a query on the intuitionistic fuzzy database. It can be translated into relational algebra in the following form:

Select	NAME, HAIR COVERAGE, HAIR TEXTURE, BUILD
From	CRIMINAL DATA
	With Level(HAIR COVERAGE)=0.8
	Level(HAIR TEXTURE) = 0.8
	Level (BUILD) = 0.7
Where	HAIR COVERAGE = `Full Big'
	HAIR TEXTURE = 'Curly'
	BUILD = `Large'

Result: The above query gives rise to the following relation. And, further investigation
now is to be done on this only, instead of dealing with a hugo list of criminal.

*LIKELY MURDERER

NAME	HAIR COVERAGE	HAIR TEXTURE	BUILD
{ Arup, Falguni }	{ Full Big, Full Small }	{ Curly, Stc. }	{Large, Very Large }

5. Conclusions

Conclusions.

- Presented an overview of the basic concepts of intuitionistic fuzzy set theory, intuitionistic fuzzy relations.
- Introduced the concept of intuitionistic fuzzy databases and an application of this database

Next Studies

- Data Dependencies and Normalization of Intuitionistic Fuzzy Database.
- The concepts of Picture Fuzzy Set and Picture Fuzzy Database.

References

- [1] Angelov, P.P., *Optimization in an intuitionistic fuzzy environment*, Fuzzy Set and Systems, 86 (1997),p.299-306.
- [2] Szmidt, E. and Kacprzyk, J., *Intuitionistic fuzzy set in group decision marking*, NIFS 2(1) (1996) p.11-44.
- [3] De, S.K., Biswas, R. and Roy, A.R., *An application of intuitionistic fuzzy set in medical diagnosis*, Fuzzy Set and Systems (1998).
- [4] Atanassov, K. and Gargov, G., *Intuitionistic fuzzy prolog*, Fuzzy Set and Systems 53 (1993) p.121-128.
- [5] Buckles, B.P. and Petry, F.E., *A fuzzy representation of data for relational database*, Fuzzy Set and Systems 7(3) (1982) p.213-226.

[6] Zadeh, L.A., *Fuzzy set*, Information And Control. 8 (1965) p. 338-353

Thank you for your attention !

