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Abstract We introduce a multi-step machine learning approach and use it to clas-
sify electroencephalogram (EEG) data. This approach works very well for high-
dimensional spatio-temporal data with separable covariance matrix. At first all fea-
tures are divided into subgroups and linear discriminant analysis (LDA) is used to
obtain a score for each subgroup. Then LDA is applied to these scores, produc-
ing the overall score used for classification. In this way we avoid estimation of the
high-dimensional covariance matrix of all spatio-temporal features. We investigate
the classification performance with special attention to the small sample size case.
We also present a theoretical error bound for the normal model with separable co-
variance matrix, which results in a recommendation on how subgroups should be
formed for the data.

1 Introduction

Fisher’s classical linear discriminant analysis (LDA) is still one of the most widely
used techniques for data classification. For two normal distributions with common
covariance matrix Σ and different means µ1 and µ2, LDA classifier achieves the
minimum classification error rate. The LDA score or discriminant function δ of an
observation X is given by

δ (X) = (X −µ)T Σ−1α with α = µ1 −µ2 and µ =
1
2
(µ1 +µ2) .

In practice we do not know Σ and µi, and have to estimate them from training
data. This worked well for low-dimensional examples, but estimation of Σ for high-
dimensional data turned out to be really difficult. When the sample size n of the
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training data is smaller than the number d of features, then the empirical d × d
covariance matrix Σ̂ is not invertible. The pseudoinverse can be used but this will
impair the classification. Even when n is larger, but of the same magnitude as d, the
aggregated estimation error over many entries of the sample covariance matrix will
significantly increase the error rate of LDA. For our EEG data, where 200 ≤ n ≤
3500 and 160 ≤ d ≤ 1280, these facts will be discussed below in Sect. 5 and Fig. 3.

One possible solution of the estimation problem is regularized LDA, where a
multiple of the unity matrix I is added to the empirical covariance. Σ̂ + rI is invert-
ible for each r > 0. The most useful regularization parameter r has to be determined
by time-consuming optimization, however.

Bickel and Levina (2004) recommended a simpler solution: to neglect all corre-
lations of the features and use the diagonal matrix DΣ of Σ instead of Σ . This is
called the independence rule. Its discriminant function δI is defined by

δI(X) = (X −µ)T D−1
Σ α.

In this paper, we present another solution, which uses some but not all correlations
of the features and which worked very well for the case of spatio-temporal data, in
the context of an experiment with a brain-computer interface.

2 Two-step Linear Discriminant Analysis

We introduce multi-step linear discriminant analysis which applies LDA in several
steps instead of applying it to all features at one time. Here we consider the case of
two steps (two-step LDA). All d features of an observation X ∈ IRd are divided into
disjoint subgroups

X =
[
XT

1 , · · · ,XT
q
]T

,

where X j ∈ IRp, and pq = d. LDA is applied to obtain a score for each subgroup
of features. In the second step, LDA is again applied to these scores which gives
the overall score used for classification. Thus the discriminant function of two-step
LDA is

δ ⋆(X) = δ (δ (X1), · · · ,δ (Xq)),

where δ denotes the LDA function. Fig. 1a illustrates the two-step LDA procedure.
The assumption of normality which is needed for LDA will be fulfilled in the second
step. The distribution of scores can be calculated applying basic linear algebra and
the properties of the multivariate normal distribution.

Proposition 1. Suppose X is normally distributed with known µ1, µ2 and Σ . Let
µ2 −µ1 = (αT

1 , . . . ,αT
q )

T and Σi j ∈ IRp×p denote the submatrix of Σ corresponding
to subgroups i and j such that Σ = (Σi j)

q
i, j=1. The scores (δ (X1), . . . ,δ (Xq))

T are
then normally distributed with common covariance matrix Θ and means ±(1/2)m
given by

Θi j = αT
i Σ−1

ii Σi jΣ−1
j j α j, mi =Θii, with i, j = 1, . . . ,q.
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Fig. 1 (a) Schematic illustration of two-step LDA. (b) Sample covariance matrix of a single dataset
estimated from 5 time points and 32 locations.

3 Separable Models

Statistical modelling of spatio-temporal data often is based on separable models
which assume that the covariance matrix of the data is a product of spatial and tem-
poral covariance matrices. This greatly reduces the number of parameters in contrast
to unstructured models. Genton (2007) argues that separable approximations can be
useful even when dealing with non-separable covariance matrices.

A spatio-temporal random process X(·, ·) : S×T → IR with time domain T ⊂ IR
and space domain S ⊂ IR3 is said to have a separable covariance function if, for all
s1,s2 ∈ S and t1, t2 ∈ T , it holds

Cov(X(s1, t1),X(s2, t2)) = u(t1, t2) · v(s1,s2), (1)

where u and v is the temporal and spatial covariance function, respectively. Suppose
that the data from X(·, ·) is only selected at a finite set of locations s1, . . . ,sp and
time points t1, . . . , tq. An observation for classification is obtained by concatenation
of spatial data vectors at times {t1, · · · , tq}

X = [X(s1; t1) · · ·X(sp; t1) · · ·X(s1; tq) · · ·X(sp; tq) ]
T . (2)

Equation (1) says that the covariance matrix of X can be written as Kronecker prod-
uct of the spatial covariance matrix V with entries vi j ≡ v(si,s j) and the temporal
covariance matrix U with ui j ≡ u(ti, t j),

Σ =U ⊗V.

In the context of EEG, the locations s1, . . . ,sp are defined by the electrode posi-
tions on the scalp. Huizenga et al. (2002) demonstrated that separability is a proper
assumption for this kind of data. Fig. 1b visualizes the Kronecker product structure
of the covariance matrix of one of our data sets. There are p = 32 electrodes and
q = 5 time points. Each of the five blocks on the diagonal represents the covariance
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between the electrodes for a single time point. The other blocks represent covariance
for different time points.

4 An Error Bound for Two-step LDA

In this section we derive a theoretical error estimate for two-step LDA in the case of
separable models. The following theorem, illustrated in Fig. 2a, shows that the loss
in efficiency of two-step LDA in comparison to ordinary LDA even in the worst case
is not very large when the condition number of the temporal correlation matrix is
moderate. The assumption that the means and covariance matrices are known may
seem a bit unrealistic, but it is good to have such a general theorem. The numerical
results in Sect. 5 will show that the actual performance of two-step LDA for finite
samples is much better. To compare the error rate of δ and δ ⋆, we use the technique
of Bickel and Levina (2004) who compared independence rule and LDA in a similar
way.

Theorem 1. Suppose that mean vectors µ1,µ2 and common separable covariance
matrix Σ =U ⊗V are known. Then the error rate e2 of the two-step LDA fulfils

e1 ≤ e2 ≤ Φ
(

2
√

κ
1+κ

Φ−1(e1)

)
, (3)

where e1 is the LDA error rate, κ = κ(U0) denotes the condition number of the
temporal correlation matrix U0 = D−1/2

U UD−1/2
U , DU = diag(u11, · · · ,uqq), and Φ

is the Gaussian cumulative distribution function.

Proof. e1 ≤ e2 follows from the optimality of LDA. To show the other inequality,
we consider the error ē of the two-step discriminant function δ̄ defined by

δ̄ (X) = δI(δ (X1), · · · ,δ (Xq)),

where δI is the discriminant function of the independence rule. The relation e2 ≤ ē
again follows from the optimality of LDA and Proposition 1. We complete the proof
by showing that ē is bounded by the right-hand side of (3), by the technique of
Bickel and Levena (2004). We repeat their argument in our context, demonstrating
how U0 comes up in the calculation. We rewrite the two-step discriminant function
δ̄ applied to the spatio-temporal features X with α = µ1 −µ2 and µ = (µ1 +µ2)/2

δ̄ (X) = (X −µ)T Σ̄−1α , where Σ̄ = DU ⊗V =

u11V · · · 0
...

. . .
...

0 · · · uqqV

 .
The errors e1 of δ (x) and ē of δ̄ (x) are known, see Bickel and Levina (2004):
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e1 = Φ

(
−(αT Σ−1α)1/2

2

)
, ē = Φ

(
−αT Σ̄−1α

2(αT Σ̄−1ΣΣ̄−1α)1/2

)
.

Writing α0 = Σ̄−1/2α , we determine the ratio

r =
Φ−1(ē)
Φ−1(e1)

=
(αT

0 α0)

[(αT
0 Σ̃α0)(αT

0 Σ̃−1α0)]1/2
, (4)

where

Σ̃ = Σ̄−1/2ΣΣ̄−1/2 = (D−1/2
U ⊗V−1/2)(U ⊗V )(D−1/2

U ⊗V−1/2)

= (D−1/2
U UD−1/2

U )⊗ (V−1/2VV−1/2) =U0 ⊗ I.

Clearly Σ̃ is a positive definite symmetric matrix and its condition number κ(Σ̃) is
equal to the condition number κ = κ(U0) of the temporal correlation matrix U0. In
the same way as Bickel and Levina we obtain from (4) by use of the Kantorovich
inequality r ≥ 2

√
κ/(1+κ). With (4) and Φ−1(e1)< 0 this implies

ē ≤ Φ
(

2
√

κ
1+κ

Φ−1(e1)

)
, which completes the proof.

5 Classification of EEG Data

To check the performance of two-step LDA, we use the data of a brain-computer
interface experiment by Frenzel et al. (2011). A mental typewriter was established
using 32-electrode EEG. Users sit in front of a screen which presents a matrix of
characters. They are instructed to concentrate on one target character by performing
a mental count. Then characters are highlighted many times in random order. About
300 ms after highlighting the target character, a so-called event-related potential
should appear in the EEG signal. This potential should not appear for the other
characters.

The experiment intended to control the effect of eye view. Users were told to
concentrate their eyes on a specific character. When this is the target character, the
condition is described as overt attention, and the expected potential is fairly easy to
identify. However, most of the time users looked at a different character and counted
the target character in their visual periphery. This is referred to as covert attention,
see Treder and Blankertz (2010). Controlling a brain-computer interface by covert
attention is particularly difficult.

Detection of target characters from the EEG data is a binary classification prob-
lem. Each time interval where a character was highlighted is considered as a sample.
Class labels are defined according to whether the target character is presented or not.
Our data consists of nine datasets of m = 7290 samples measured with p = 32 elec-
trodes. For each sample, data of the time interval of about 600 ms were downsam-
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Fig. 2 (a) The error bound of two-step LDA as function of the LDA error rate. (b) Condition
numbers of U0 and V0 estimated from a single dataset for different number of time points q.

pled from the acquisition rate of the hardware to a predefined sampling frequency.
For typical values of 8, 16, 32, 64Hz one obtains q = 5, 10, 20, 40 time points and
thus d = pq = 160, 320, 640, 1280 spatio-temporal features in total.

Defining the Feature Subgroups of Two-step LDA

LDA is invariant with respect to reordering of features whereas two-step LDA is
only when reordering is performed within the subgroups. For the latter we saw that
it is preferable to define the subgroups such that the statistical dependencies between
them are smaller than within. This is reflected in the influence of condition number
of U0 in the bound of the error rate (3).

In Sect. 3 we defined the features to be ordered according to their time index,
see (2), and Xi to contain all features at time point i. In other words, in the first step
LDA was applied to the spatial features. However, it also seems natural to order the
features according to their spatial index and to assign all features from electrode i to
Xi, thus interchanging the role of space and time. In this case the covariance matrix
becomes V ⊗U ̸= U ⊗V and we have to replace κ(U0) by κ(V0) in (3). We argue
that the decision between both approaches should be based on a comparison of both
condition numbers using the data. This done in the following.

Our EEG data is, rather typical, normalized such that the means over all time
points and all electrodes are zero. This implies U and V both to have a single zero
eigenvalue. Maximum-likelihood estimation of both in general requires their in-
verses to exist, see Mitchell et al. (2006). We bypassed this problem by using the
simple average-based estimator

V̂ =
1
q

q

∑
i=1

Σ̂ii ,
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where Σ̂ii is the sample covariance matrix of the i-th subgroup. It can be shown that
V̂ is an unbiased and consistent estimator of λ̄V with λ̄ being the average eigenvalue
of U . Since the correlation matrix corresponding to λ̄V is V0 we estimated κ(V0) by
κ(V̂0), ignoring the single zero eigenvalue. Estimation of κ(U0) was done in the
same way.

Fig. 2b shows the condition numbers estimated from a single dataset for different
number of time points q. Except for q = 40 the condition numbers of U0 were much
smaller than those of V0. This also applied for the corresponding error bounds, see
Fig. 2a. It is thus likely that the actual error rates are smaller. Indeed, we never
encountered a single case where first applying LDA to the temporal features gave
better results for our data. For q = 40 the upper bounds were too loose to draw
any conclusions. This could be observed in all nine datasets and gives rise to the
following recommendation.

Remark 1. When two-step LDA is applied to EEG data it is preferable to define the
feature subgroups such that Xi contains all features at time point i.

Learning Curves

We investigated the classification performance using p = 32 electrodes and q = 40
time points and hence d = 1280 features in total. Two-step LDA was compared to
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Fig. 3 Learning curves of two-step LDA (o), regularized LDA (∗) and LDA (+) for all nine
datasets.
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ordinary and regularized LDA. For each dataset classifiers were trained using the
first n samples, with 200 ≤ n ≤ 3500. Scores of the remaining m−n samples were
calculated and classification performance was measured by the AUC value, i.e. the
relative frequency of target trials having a larger score than non-target ones.

Fig. 3 shows the learning curves for all nine datasets. The prominent dip in the
learning curves of LDA around d is due to the use of the pseudoinverse for n <
d+2. Regularized LDA for n ≈ d performed much better than LDA, supporting the
findings of Blankertz et al. (2011).

Two-step LDA showed similar or slightly better performance than both regu-
larized and ordinary LDA. For large n the difference was rather small. For some
datasets, however, it showed much faster convergence, i.e. it needed less training
samples to achieve a certain classification performance. Sample size n= 3500 corre-
sponds to a training period of approximately 20 minutes. Since two-step LDA gave
reasonable performance even with short training periods, it might offer an practi-
cally relevant advantage. Although all three classifiers are computationally cheap, it
should be noted that two-step LDA does not involve the inversion of the full sample
covariance matrix.

6 Conclusion

When linear discriminant analysis is applied to high-dimensional data, it is difficult
to estimate the covariance matrix. We introduced a method which avoids this prob-
lem by applying LDA in two steps for the case of spatio-temporal data. For our EEG
data, the two-step LDA performed better than regularized LDA.
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