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Introduction
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Numerical Scheme

Finite volume discretisation

U
S+ Ve(FW) =0 (1)

Integrating (1) over C;
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Numerical Scheme

Finite volume discretisation

We obtain the numerical scheme

Un
— T T Z ,Js,J_O

JEN()

Un+1

with the numerical flux: 8,-1- = Sl,‘jfa(j,‘j F(U).njds

Usually, the numerical flux CBU is defined by solving exactly/
approximately a Riemann problem:
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Numerical Scheme

Finite volume discretisation

And we have the numerical flux d_D',J

- F(U;)+ F(U)) .
3, - PR o
Various choices for D(U;, U;):
@ D = 0: centered scheme.
® D = |ARoe,ii;|: upwind scheme.

@ D = p(A)l: Rusanov scheme etc ...
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Numerical Scheme

Roe scheme

Replace the exact nonlinear Riemann problem by a approximate
problem linearized between cells i and j
ou au

It + A(Ui, Uj’nij)ﬁTﬁj

=0

ARoe,ii; (Ui, Uj) = A(U;, U;, Tiyy) satisfies 3 conditions:
© ARoe,ii; is diagonalizable
@ Consistency: Agoe ii; (Ui, Ui) = VF5(U;)
© Conservation: (F(U;) — F(U)))-fij = Agoe,i; (Ui — Uj)
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Numerical Scheme

Roe scheme

The Roe's numerical flux:

— F(U/)+F(U') . U; — U;
Cj = —— T~ [Aee.i;| =
= F(U)Tj + Agge 5, (Uj — Up)
= F(U)Tj — Abge s, (U — Up)
with |A| the absolute value of A, AT = A+T|A‘, A = A_2‘A|
The final scheme:
urtt —ur Si
At + Z VARoe,ﬁ,-j(Uj - U’) =0

jengy !
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Numerical Scheme

The Single-phase Flows

@ p: density
] 7 : momentum
% + V‘7 = (0 @ p: pressure
9 @ e : internal
otV (7®%+p') - ”A(%) =0 energy
%+ V. [(ﬂEﬂLP)%] — MAT = 0 o E:total
energy

Eq of state: p = (v — 1)ep. o T : temperature
@ v : viscosity

@ )\ : conductivity
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Numerical Scheme

Numerical Schemes

ou ;
5?+V(fwwun+v.0ﬂﬁuﬂzo (3)
U the vector of unknown physical quantities

Fon(U) the flux of convection, F¥f(U) the flux of diffusion

Finite volume formulation

dX + Z (]:conv U)_n—’:»i_‘_]_—diff(U).n_,i') ds=0 (4)

aC;
Set Ui(t) =1 fC U(x t)dx and U = U;j(nAt), we have:
urtt —ur ;
i U S.I (¢convu + q)d/ff) 0 (5)

At v;
JEN(I)
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Numerical Scheme

, . . -
Use Roe's scheme of the numerical flux of convection ¢ E-"”":

6>Z'onv _ F (UI)";F (Uj)ﬁu_l_DUJ;U' (7)
FOV(UNTH ;i + A~ (U, Up)(U; = U)). (8)
with A~ = % and A is a Roe's matrix.

For the numerical flux of diffusion CDZ-’ff on structured meshes:

odi
47 = D(U;, Uj)(U; — U)) (9)
Explicit system
urtt —ur Sij (A
—Qx; T gl%_) 5 LA+ DYIUNHUT = U7) =0 (10)
J 1
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Numerical Scheme

Implicit scheme

Implicit non linear system

U’_n+l _ Ulp

At + Z #{(A_ + D)(U”+1)}(an+1 . Uin+1) 0

jeny !
(11)

We have the equation: f(U) = 0, with:

Ui — U,-” Sjj —
V)i = =57+ D (A +D)(Us U)K, — Uy)
jen()

We solve with the Newton iterative algorithm:

FIUR) (U = U9 + F(UF) =0
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Numerical Scheme

Newton scheme

Solve several linear systems to obtain the required solutions:

k+1
U Y [+ oyt ) (sUk - )
jen(y
Uk —up i T A
= _ITt’ - Z % |:(A =+ D)(Ulkv lj_jk):| (U_lk - Uik)7

JEN()

where 5Uk+1 UkJrl Uk.
Each Newton iteration requires the numerical solution of the
following linear system:

AUR U = b, ux) (12)

where U = (Us, ..., Un)*.
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Validation

The test cases

@ Detonation in a closed box

@ Lid driven cavity flows

Figure: Mesh
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Initial data

Validation

Detonation problem
V=0

T = 300K

Fixed walls

200 x 200 grid
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Validation

Initial data

Lid driven cavity velocty X
V=0

T =35K

3 fixed walls

1 moving wall
50 x 50 grid
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Validation

Explicit vs Implicit: Lid driven cavity

Figure: Explicit scheme, Stationnary . )
Figure: cfl 1600 nb time steps 1

regime
CFL 0.5 100 | 400 800 1600
Number of time steps | 3152 16 4 2 1
Time of computation | 155.987 | 3.55 | 1.079 | 0.634 | 0.34

Thu Huyen Dao Numerical Solutions of Partial Diffirential Equations



Validation

Upwind vs Centered: Lid driven cavity

Figure: Upwind scheme, Stationnary Figure: Centered scheme, Stationnary
regime regime

The centered scheme is much less diffusive and captures the
correct solution as opposed to the upwind scheme.
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Validation

Scaling strategy

@ For a better preconditioning of the matrix, off diagonal entries
of the matrix must have a small magnitude

o After applying a similarity transformation with a diagonal
matrix Dsc; and DS_Ci, all entries of the matrix have the same
magnitude.

@ Instead of solving system Adlf = b, one can rather solve:

Al = b, (13)
where A = Doy ADZY, 614 = Docadld and b = Decsb.

sca’

@ System (13) can be resolved more easily using an ILU
preconditioner.

[ T.H.Dao, M. Ndjinga, F. Magoules, Comparison of Upwind
and Centered Schemes for Low Mach Number Flows, Finite
Volumes for Complex Application VI, Prague, June 6-10,.2011.

Thu Huyen Dao Numerical Solutions of Partial Diffirential Equations



Validation

Scaling strategy

Ierations
Terations

Figure: Number of GMRES Figure: Number of GMRES
iterations for the upwind iterations for the upwind
scheme, CFL 1000 scheme, mesh 100 x 100

nuE)
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Lc
Scaling T
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Ierations
Ierations
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Flgure Number of GMRES Figure: Number of Newton
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