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Introduction

Each object is characterized by its vector of measurements
x = [x1, . . . , xp]T ∈ Rp and response class k ∈ {1, 2}

p = the number of variables
Given training data G = {(x (i), ki ), i = 1, . . . , n}

n = the training sample size

The Problem of Classification

Finding: a classification function g : Rp → {1, 2}, which
can predict the unknown class k of new observation x ∈ Rp

using available training data as accurately as possible

Assuming: {(x (i), ki ), (x , k), i = 1, . . . , n} are independent
and come from a certain distribution
The error rate of a classification function g for a new
observation x in class k is

W (g) = P(g(x) 6= k)
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Introduction

The Dimension p of x

In classical applications, p is small (a few variables)

Modern technologies: a large p (many variables)

data from brain computer interfaces
genetic and microarray data
high-frequency financial data

Example: Brain-Computer Interface Data, Frenzel et al. (2011)

Distinguishing brain states into two classes

Classification based on ElectroEncephaloGraphy (EEG) signals

over 30 000 scalp potential values
p = 1024 values after preprocessing

As small training sample sizes as possible because of the online
application requirements: n only in thousands or hundreds
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Introduction

Example: Classifying human acute leukemias into two types

Gene expression microarray, see Golub et al. (1999)

Two types of human acute leukemias

acute myeloid leukemia (AML)
acute lymphoblastic leukemia (ALL)

Distinguishing ALL from AML is crucial for successful
treatment

Classification based solely on gene expression monitoring

over 7, 000 genes
p = 1, 714 genes after an initial screening

A training data set:

47 ALL
25 AML

p can be much larger than training sample sizes
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Linear Discriminant Analysis Theoretical Analysis

Wald’s Approach (1944)

Finding the best classification function

Classify an object to class 1 or class 2 based on its observed vector

x ∼ Np(µ1,Σ) or x ∼ Np(µ2,Σ)

Np(µ,Σ) : the p-dimensional normal distribution with mean vector
µ and covariance matrix Σ
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Linear Discriminant Analysis Theoretical Analysis

When µ1,µ2 and Σ are known

Fisher’s discriminant function δF of observation x is given by

δF (x) = x
TΣ−1α, α = µ1 − µ2 (1)

δF projects x down to one dimension using δF (x) = wTx
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Linear Discriminant Analysis Theoretical Analysis

When µ1,µ2 and Σ are known

The classification function of Fisher’s Linear Discriminant
Analysis (LDA) is defined by

g(x) =

{
1, δF (x) ≥ w0

2, δF (x) < w0,

where w0 = δF (µ) + log(π2/π1), µ = (µ1 + µ2)/2

LDA is the Bayes classifier

If π1 = π2 = 1/2 then w0 = δF (µ), the error rate of LDA is

W (δF ) = Φ(dp/2), dp = [αTΣ−1α]1/2

Φ(t) = 1− Φ(t) : the tail probability of the standard normal

distribution, dp : the Mahalanobis distance between two classes

The larger dimension p is the better

lim
dp→∞

W (δF ) = 0
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Linear Discriminant Analysis Theoretical Analysis

When µ1,µ2 and Σ are known

Remark 1 (Cai and Liu (2011))

Write α = µ1 − µ2 =

[
α0

0

]
, Σ =

[
Σ11 ΣT

12

Σ12 Σ22

]
, then

d2
p = αTΣ−1α can be decomposed as follows:

d2
p = αTΣ−1α = αT

0 Σ−1
11 α0 + (Bα0)TW−1(Bα0), (2)

where B = Σ−1
22 Σ12. Since W = Σ22 −Σ12Σ−1

11 ΣT
12 is

positive definite, if Bα0 6= 0, then the last term in (2) is
positive and

d2
p > αT

0 Σ−1
11 α0

Some components of x contribute to classification through their

correlations with others although they have no mean effects
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Linear Discriminant Analysis Impact of Dimensionality on Linear Discriminant Analysis

When µ1,µ2 and Σ are unknown

Statistical Issue

We have training data of size n

G = {(x (i), ki ), i = 1, . . . , n}, #G = n

x
(i) ∈ Rp, ki ∈ {1, 2}

x
(i) i .i .d .∼

{
Np(µ1,Σ), for ki = 1

Np(µ2,Σ), for ki = 2

G is independent of x

How to use the training data G to construct a classifier
having the error rate close to the optimal error rate W (δF )

Checking assumption:
How to test Σ1 = Σ2?
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Linear Discriminant Analysis Impact of Dimensionality on Linear Discriminant Analysis

When µ1,µ2 and Σ are unknown

Classical Applications: Fixed-p-large-n

Replacing unknown µ1,µ2, and Σ by

µ̂k =
1

n1

∑
ki=k

x(i), nk = #{i : ki = k}, k = 1, 2

n = n1 + n2, Σ̂ =
1

n − 2

2∑
k=1

∑
ki=k

(x(i) − µ̂k)(x(i) − µ̂k)T ,

we obtain the sample Fisher’s discriminant function

δ̂F (x) = x
T Σ̂
−1

α̂, α̂ = µ̂1 − µ̂2

What kind of p (which may diverge to ∞) is LDA efficient?
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Linear Discriminant Analysis Impact of Dimensionality on Linear Discriminant Analysis

Linear Discriminant Analysis and Asymptotic Results

Regularity Conditions

There is a constant c0 (not depending on p or n) such that

c−1
0 ≤ all eigenvalues of Σ ≤ c0

c−1
0 ≤ maxj≤p α

2
j ≤ c0, αj is the j-th component of α = µ1 − µ2

Asymptotic Setting

n = n1 + n2, n1/n→ c ∈ (0, 1) as n→∞

p is a function of n, p/n→ b ∈ [0,∞] as n→∞

Asymptotic Optimality (n→∞)

The sample LDA is asymptotically optimal if W (δ̂F | G)/W (δF )
P→ 1

The sample LDA is asymptotically sub-optimal if W (δ̂F | G)
P→W (δF )

The sample LDA is asymptotically worst if W (δ̂F | G)
P→ 1/2
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Linear Discriminant Analysis Impact of Dimensionality on Linear Discriminant Analysis

Linear Discriminant Analysis (p < n)

Theorem 1 (Shao et al. (2011))

Suppose that sn = p
√

log p/
√
n→ 0.

(i) The conditional error rate of the sample LDA is equal to

W (δ̂F | G) = Φ([1 + OP(sn)]dp/2).

(ii) If dp is bounded, then the sample LDA is asymptotically optimal and

W (δ̂F | G)

W (δF )
− 1 = OP(sn).

(iii) If dp →∞, then the sample LDA is asymptotically sub-optimal.

(iv) If dp →∞ and snd
2
p → 0, then the sample LDA is asymptotically

optimal.
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Linear Discriminant Analysis Impact of Dimensionality on Linear Discriminant Analysis

Modern Application: Large-p-not-so-large-n

“High-dimensional data are nowadays rule rather than
exception in areas like information technology, bioinformatics
or astronomy, to name just a few”, see P. Bühlmann and S.
van de Geer (2011)

A large p results in more information, but produces more
uncertainty when the distribution of x is unknown, see Shao
et al. (2011)

Our problem: Estimation of covariance matrix Σ
with p = 1024, ≈ 106 entry parameters
but sample size n only in thousands or hundreds

Bickel and Levina (2004) showed that the sample LDA is as
bad as random guessing when p

n →∞
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Linear Discriminant Analysis Impact of Dimensionality on Linear Discriminant Analysis

Separating Hyperplane When p is Large

Is optimization enough to find separating hyperplanes for test data?

Theorem 2 (Hahn-Banach)

K1 = conv{x (i)|ki = 1},K2 = conv{x (i)|ki = 2}. If K1 ∩ K2 = ∅, there exists a
separating hyperplane g(x) = w0 for training data
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Linear Discriminant Analysis Impact of Dimensionality on Linear Discriminant Analysis

Separating Hyperplane When p is Large

Remark 2

If n > p + 1, the problem usually cannot be solved because K1 ∩K2

= ∅. In high dimension p ≥ n − 1 these sets are in general disjoint

Examples: n = 4, p = 3

n1 = 3, n2 = 1 n1 = n2 = 2
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Linear Discriminant Analysis Impact of Dimensionality on Linear Discriminant Analysis

Separating Hyperplane When p is Large

Remark 3

Determining separating hyperplanes by linear programming
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Linear Discriminant Analysis Impact of Dimensionality on Linear Discriminant Analysis

LDA When p is Large

Ignore the dependence

(i) Independence rule, see Bickel and Levina (2004)
(ii) Features annealed independence rule, see Fan and Fan (2008)

Estimate Σ−1

(i) Σ is sparse: Estimation Σ−1 by the inverse of a thresholding
estimate of Σ, see Shao et al. (2011)

(ii) Σ−1 is sparse: Glasso estimator of Σ−1, see Rothman et al.
(2008)

See also Witten and Tibshirani (2009), Tibshirani et al.
(2002), Guo et al. (2007), Wu et al. (2009), and Hall et al.
(2009)
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Linear Discriminant Analysis Regularized Linear Discriminant Analysis

Regularized Linear Discriminant Analysis

Regularized LDA replaces Σ̂ by

Σ̃(γ) := (1− γ)Σ̂ + γνI

where ν = tr(Σ̂)/p, γ ∈ [0, 1]: a tuning parameter

Extreme eigenvalues of Σ̂ are modified towards the average ν

The optimal parameter γ? can be calculated by the analytic formula
as in Schäfer and Strimmer (2005)

γ? =
n

(n − 1)

∑p
j1,j2=1 vark(zj1j2 (k))∑

j1 6=j2
σ̂2
j1j2

+
∑

j1
(σ̂j1j1 − ν)2

where x (k) = [xkj ], common mean µ̂ = [µ̂j ], Σ̂ = [σ̂j1j2 ] and

zj1j2 (k) = (xkj1 − µ̂j1 )(xkj2 − µ̂j2 )

or performing n-fold cross-validation, see Frenzel et al. (2010)

The state-of-the-art classifier for Brain-Computer Interface data, see
Blankertz et al. (2011)
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Linear Discriminant Analysis Sparse Linear Discriminant Analysis

Linear Discriminant Analysis (p > n)

Reason for bad performance of the LDA when p > n

Too many parameter in α, Σ to be estimated

Solutions?

A reasonable classifier can be obtained of both α and Σ are
sparse

Sparsity

Many elements of α are 0 or very small

Many off-diagonal elements of Σ are 0 or very small

Both are true in many applications
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Linear Discriminant Analysis Sparse Linear Discriminant Analysis

Sparse Covariance Matrices

Sparsity measure for Σ

Bickel and Levena (2008) consider the following sparsity measure for Σ

Ch,p = max
j≤p

p∑
l=1

|σjl |h

σjl is the (j , l)th element of Σ, h is a constant not depending on
p, 0 ≤ h < 1

Special case of h = 0

C0,p is the maximum of the numbers of nonzero elements of rows of Σ

Sparsity on Σ

Not sparse: Ch,p = O(p)

Sparse: Ch,p = O(log p) or Ch,p = O(nβ), 0 ≤ β < 1
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Linear Discriminant Analysis Sparse Linear Discriminant Analysis

Sparse Covariance Matrices

Figure : Plot of off-diagonal elements of Σ̂ (98.77% of off-diagonal
elements of Σ̂ are smaller than the threshold value)
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Linear Discriminant Analysis Sparse Linear Discriminant Analysis

Sparse Covariance Matrices

Bickel and Levina’s thresholding estimator of Σ

Σ̂: sample covariance matrix. Σ̃ is Σ̂ thresholded at
tn = M1

√
log p/

√
n (M1 is a constant) i.e.,

if Σ̃ = [σ̃j ,l ], then σ̃j ,l = σ̂j ,l I (σ̂j ,l > tn)

σ̂j ,l is the (j , l)th element of Σ̂, and I is the indicator function

Consistency of Σ̃

If log p/n→ 0 and fn = Ch,p(log p/n)(1−h)/2 → 0 then

‖Σ̃−Σ‖ = OP(fn) and ‖Σ̃−1 −Σ−1‖ = OP(fn)

‖ · ‖ is the spectral norm
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Linear Discriminant Analysis Sparse Linear Discriminant Analysis

Sparsity on α

A large ‖α‖ results in large difference between Np(µ1,Σ) and
Np(µ2,Σ)

But it also results in a more difficult task of constructing a good
classification rule, since α has to be estimated based on the training
sample G

Sparsity measure for α

Shao et al (2011) consider the following sparsity measure for α

Dg ,p =

p∑
j=1

α2g
j

αj is the jth component of α
g is a constant not depending on p, 0 ≤ g < 1
α is sparse if Dg ,p is much smaller than p
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Linear Discriminant Analysis Sparse Linear Discriminant Analysis

Sparsity on α

Sparse estimator of α

α̃: α̂ thresholded at

an = M2(log p/n)ξ with constants M2 > 0 and ξ ∈ (0, 1/2)

i.e., the jth component of α̃ is α̂j I (|α̂j | > an), α̂j is the jth
component of α̂

A useful result (Shao et al. (2011))

If log p/n→ 0, then

P(|α̂j | ≤ an, j = 1, . . . , p with |αj | ≤ an/r)→ 1,

P(|α̂j | > an, j = 1, . . . , p with |αj | > an/r)→ 1
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Linear Discriminant Analysis Sparse Linear Discriminant Analysis

Sparsity on α

Figure : The cumulative proportions defined as
∑l

j=1 α̂
2
(j)/‖α̂‖

2, l = 1,

. . . , p where α̂2
(j) is the jth largest value among the squared components

of α̂
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Linear Discriminant Analysis Sparse Linear Discriminant Analysis

Sparse linear discriminant analysis (SLDA)

Classify x to class 1 if and only if

δ̂SLDA(x) = α̃T Σ̃
−1
x ≥ δ̂SLDA(µ)

Theorem 3 (Shao et al. (2011))

Assume log p/n→ 0 and

bn = max{fn,
a1−g
n

√
Dg ,p

dp
,

√
Ch,pqn

dp
√
n
} → 0

dp =
√
αTΣ−1α, an = (log p/n)ξ, fn = Ch,p(log p/n)(1−h)/2

Ch,p = max
j≤p

p∑
l=1

|σjl |h,Dg ,p =

p∑
j=1

α2g
j , qn = #{j : |αj | > an/r}
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Linear Discriminant Analysis Sparse Linear Discriminant Analysis

Sparse linear discriminant analysis (SLDA)

Theorem 3 (continued)

(i) The conditional error rate of the SLDA is equal to

W (δ̂SLDA | G) = Φ([1 + OP(bn)]dp/2)

(ii) If dp is bounded, then the SLDA is asymptotically optimal and

W (δ̂SLDA | G)

W (δF )
− 1 = OP(bn)

(iii) If dp →∞, then the SLDA is asymptotically sub-optimal

(iv) If dp →∞ and bnd
2
p → 0, then the SLDA is asymptotically

optimal
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Linear Discriminant Analysis Sparse Linear Discriminant Analysis

Applying the SLDA to human acute leukemias classification

p = 1, 714 genes
n1 = 47, n2 = 25, n = 72

Figure : Cross-validation score vs (M1,M2) (Shao et al. (2011))
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Linear Discriminant Analysis Sparse Linear Discriminant Analysis

Cross validation estimates (Shao et al. (2011))

Cross validation for SLDA
error rate is 0.0417
2 of 47 cases in class 1 are misclassified
1 of 25 cases in class 2 are misclassified

Cross validation for LDA
error rate is 0.0694
2 of 47 cases in class 1 are misclassified
3 of 25 cases in class 2 are misclassified

Simulation (Shao et al. (2011))

Data are generated from Np(µ̂1, Σ̃) and Np(µ̂2, Σ̃), n1 = 47,
n2 = 25, p = 1, 714. Error rates of

LDA = 0.15

SLDA = 0.07

optimal rule = 0.03
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Linear Discriminant Analysis Sparse Linear Discriminant Analysis

Simulation

Figure : Boxplots of conditional error rates of LDA, the shrunken
centroids regularized discriminant analysis (SCRDA), and SLDA

Nguyen Hoang Huy (DAMI-HUA) Linear Classifiers for High-Dimensional Data January 6, 2014 31 / 71



Features Annealed Independence Rule

Independence Rule

The discriminant function of Independence Rule is

δI (x) = x
T
D
−1
Σ (µ1 − µ2), where DΣ = diag(Σ)

Independence Rule does not achieve the minimum error rate

The sample version: δ̂I (x) = x
T
D̂
−1

Σ̂ (µ̂1 − µ̂2)

Consider The Parameter Space

Γ = {θ = (α,Σ) : αT
D
−1
Σ α ≥ Cp, λmax(R) ≤ b0, min

1≤j≤p
σ2
j > 0},

where Cp is a deterministic positive sequence, R = D
−1/2
Σ ΣD

−1/2
Σ ,

b0 is a positive constant, and σ2
j is the j-th diagonal element of Σ
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Features Annealed Independence Rule

Impact of Dimensionality on Independence Rule

Let x be in class 1. Define the worst case posterior error rate as

W (δ̂I ) = P(δ̂I (x) < δ̂I (µ̂) | G), µ̂ = (µ̂1 + µ̂2)/2

WΓ(δ̂I ) = max
θ∈Γ

W (δ̂I )

Theorem 4 (Fan and Fan (2008))

Suppose that log p = o(n), n = o(p) and nCp →∞.

(i) The posterior error rate fulfils

W (δ̂I ) ≤ Φ


√

n1n2

pn αT
D
−1
Σ α(1 + op(1)) +

√
p

nn1n2
(n1 − n2)

2
√
λmax(R) [1 + n1n2

pn αTD
−1
Σ α(1 + op(1))]1/2

 (3)
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Features Annealed Independence Rule

Features Annealed Independence Rule

Theorem 4 (Fan and Fan (2008))

(ii) If
√
n1n2/(np)Cp → C0 with C0 some positive constant, then

the worst case posterior error rate

WΓ(δ̂I )
P−→ Φ

(
C0

2
√
b0

)
In particular, if C0 = 0, then WΓ(δ̂I )

P−→ 1
2

The inequality (3) is very useful

If we only include the first m features j = 1, . . . ,m in the
independence rule, then (3) still holds with each term p
replaced by m
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Features Annealed Independence Rule

Features Annealed Independence Rule

The contribution of the j-th feature is evaluated by its utility
value α2

j /σ
2
j

Assume that the importance of the features is already ranked
in the descending order of {α2

j /σ
2
j , j = 1, . . . , p}

Then 1√
m

∑m
j=1 α

2
j /σ

2
j will first increase and then decrease as

we include more and more features, and thus the right hand
side of (3) first decreases and then increases with m

Minimizing the upper bound in (3) can help us to find the
optimal number of features m

Nguyen Hoang Huy (DAMI-HUA) Linear Classifiers for High-Dimensional Data January 6, 2014 35 / 71



Linear Programming Discriminant

A Direct Estimation Approach

Fisher’s rule depends on Ω = Σ−1 and α = µ1 − µ2 only
through their product Ωα

If there is a way to estimate the product Ωα directly, then
one does not need to estimate Ω and α separately

Cai and Liu (2011) proposed a constrained `1 minimization
method to directly estimate the product Ωα by exploiting the
(approximate) sparsity of Ωα
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Linear Programming Discriminant

Linear Programming Discriminant Rule

Estimate β = Ωα via constrained `1 minimization

β̂ = arg min
β∈Rp

‖β‖1 subject to ‖Σ̂β − α̂‖∞ ≤ λn, (4)

where λn is a tuning parameter which will be specified later.

Given the solution β̂ to (4), we classify x to class 1 if and
only if

δ̂LPD(x) = x
T β̂ ≥ δ̂LPD(µ̂) (5)

(4) can be cast as a linear program. We call (5) the Linear
Programming Discriminant (LPD) rule

The direct estimate leads to a classifier that is more effective,
efficient than those based on estimating Ω and α separately

In certain setting, Ωα can be well estimated even when Ω is
not estimate consistently
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Linear Programming Discriminant

Motivation

Note that β = Ωα is the solution to the equation

Σβ −α = 0

When Σ and α are unknown, they are replaced by their
respective sample version Σ̂ and α̂. We then seek the most
sparse solution within the feasible set

{β : ‖Σ̂β − α̂‖∞ ≤ λn}

to account for the variability in Σ̂ and δ̂

The convex relaxation of using `1 minimization in place of `0

minimization is a standard technique in sparse signal recovery
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Linear Programming Discriminant

Remark

Both Ω and α are sparse ⇒ Ωα is sparse: If α is k1-sparse
and Ω is k2-sparse, then Ωα is at most k1k2-sparse

The sparsity of Ωα does not require Ω being sparse. Suppose
α is k1-sparse with α = [α1 0]T where α1 is a k1-dimensional
vector. Write

Ω =

[
Ω11 ΩT

21

Ω21 Ω22

]
Ωα = [Ω11α1 Ω21α1]T does not depend on Ω22 at all. Ωα
is sparse if Ω21 is sparse. In particular, if there are at most k2

nonzero elements on each column of Ω21, then Ωα is
k1(k2 + 1) sparse

In general, it is not possible to consistently estimate Ω under
the spectral norm without regularity conditions on Ω22
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Linear Programming Discriminant

Theoretical Analysis

The error rate of LDA is

W (δF ) = Φ(dp/2), with dp = [αTΩα]1/2

which is the best possible performance in the ideal setting
where µ1,µ2 and Σ are known. This thus serves as an oracle
benchmark

Given the training samples G = {(x (i), ki ), i = 1, . . . , n}, the
conditional error rate of the LPD rule is

W (δ̂LPD | G) =
1

2
Φ

(
(µ̂− µ2)T β̂

(β̂
T

Σβ̂)1/2

)
+

1

2
Φ

(
−(µ̂− µ1)T β̂

(β̂
T

Σβ̂)1/2

)

where β̂ is given in (4)

How close is W (δ̂LPD | G) to W (δF )?
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Linear Programming Discriminant

Consistency

(C1). n1 � n2, log p = o(n), c−1
0 ≤ λmin(Σ) ≤ λmax(Σ) ≤ c0 for

some constant c0 > 0 and dp ≥ c1 for some c1 > 0

Theorem 5 (Cai and Liu (2011))

Let λn = C
√
dp log p/n with C > 0 being sufficiently large.

Suppose (C1) holds and ‖Ωα‖0 = o
(√

n
log p

)
. Then as n→∞

and p →∞,

W (δ̂LPD | G)−W (δF )
P−→ 0 (6)

In practice, λn is chosen by cross-validation

Nguyen Hoang Huy (DAMI-HUA) Linear Classifiers for High-Dimensional Data January 6, 2014 41 / 71



Linear Programming Discriminant

Rate of Convergence

Theorem 6 (Cai and Liu (2011))

Let λn = C
√
dp log p/n with C > 0 being sufficiently large.

Suppose (C1) holds and ‖Ωα‖0 = o
(
d−1
p

√
n

log p

)
, then

W (δ̂LPD | G)

W (δF )
− 1 = O

(
‖Ωα‖0dp

√
log p

n

)
(7)

with probability greater than 1− O(p−1)

Remark 4 (Cai and Liu (2011))

The results can be extended to non-Gaussian distributions
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Linear Programming Discriminant

Numerical Performance (Cai and Liu (2011))

The LPD classifier can be implemented efficiently using linear
programming

Simulation results show that the LPD rule significantly
outperforms the alternative methods in terms of the average
error rate

The LPD rule is also applied to the analysis of two real
datasets, one from a lung cancer study, see Gordon et al.
(2002) and another from leukemia study, see Golub et al.
(1999). It performs favorably in comparison to existing
methods
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Multi-Step Linear Discriminant Analysis Multi-Step Linear Discriminant Analysis Method

Two-Step Linear Discriminant Analysis

Divide all components (features) x ∈ Rp into q groups

x =

x1
...
xq


where x j ∈ Rp̈, j = 1, . . . , q, and p̈q = p

Definition 1

Two-step LDA function is defined by

δ?(x) = δF (δF (x1), · · · , δF (xq)) (8)

where δF denotes Fisher’s discriminant function
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Multi-Step Linear Discriminant Analysis Multi-Step Linear Discriminant Analysis Method

Two-Step Linear Discriminant Analysis

x1 · · · xq

[δF (x1), · · · , δF (xq)]T

δ?

HH
HHH

HHj
LDA

?
LDA

��
���

���
LDA

?
LDA

Multi-step LDA is motivated by the recursiveness of the
wavelet multiresolution decomposition, see Mallat (1989)

Using different “atoms”, given by LDA projection vectors as in
Mallat and Zhang (1993) instead of a fixed low-pass filter

Multi-step LDA does not neglect all correlations of the
features as independence rule
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Multi-Step Linear Discriminant Analysis Multi-Step Linear Discriminant Analysis Method

When µ1,µ2 and Σ are known

Theorem 7

Let ∆ = [δF (x1) · · · δF (xq)]T . Suppose that µ1, µ2 and Σ are known
then ∆ has common covariance matrix Θ and means ± 1

2m given by

Θ =
q
⊕
j=1

αT
j ·

q
⊕
j=1

Σ−1
j ·Σ ·

q
⊕
j=1

Σ−1
j ·

q
⊕
j=1

αj (9)

m = (m1, · · · ,mq), mj = αT
j Σ−1

j αj , j = 1, . . . , q (10)

where Σj ∈ Rp̈×p̈: covariance matrix of xj , α = µ1 − µ2, α = [αT
1 , · · · ,

αT
q ]T , αj ∈ Rp̈, j = 1, . . . , q.

The direct sum of q matrices Σ1, . . . ,Σq is

q
⊕
j=1

Σj =


Σ1 0 · · · 0
0 Σ2 · · · 0
...

...
. . .

...
0 0 · · · Σq
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Multi-Step Linear Discriminant Analysis Multi-Step Linear Discriminant Analysis Method

When µ1,µ2 and Σ are known

Remark 5

The theoretical error rate of two-step LDA discriminant function

W (δ?) = Φ(
d?p
2

),

where d?p = [mTΘ−1
m]1/2 is the Mahalanobis distance between

two score classes

In the case of Σ =
q
⊕
j=1

Σj , we have d?p = dp = [αTΣ−1α]1/2 and

W (δ?) = W (δF ) = Φ(
dp
2

)
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Multi-Step Linear Discriminant Analysis Separable Models

When µ1,µ2 and Σ are known

Separability

A spatio-temporal random process x(·, ·) : S × T → R with time domain
T ⊂ R and space domain S ⊂ R3 is said to have a separable covariance
function if, for all s1, s2 ∈ S and t1, t2 ∈ T , it holds

cov(x(s1; t1), x(s2; t2)) = C (s)(s1, s2) · C (t)(t1, t2) (11)

where C (s), C (t) are spatial, temporal covariance functions respectively

An observation for classification is selected at a finite set of locations
s1, . . . , s p̈ and time points t1, . . . , tq

x =
[
x(s1; t1) · · · x(s p̈; t1) · · · x(s1; tq) · · · x(s p̈; tq)

]T ∈ Rp̈q

From (11), the covariance of x is

Σ = U⊗ V,

where spatial covariance V = [C (s)(s i , s j)] and temporal covariance

U = [C (t)(ti , tj)]
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Multi-Step Linear Discriminant Analysis Separable Models

Upper Bound of Error Rate

Theorem 8 (Huy et al. (2012))

Suppose that spatio-temporal observation x are drawn from the
normal distribution with known µ1, µ2 and Σ, moreover
Σ = U ⊗ V , then the error rate e2 of the two-step LDA fulfils

e1 ≤ e2 ≤ Φ(
2
√
κ(U0)

1 + κ(U0)
Φ−1(e1)) (12)

where e1 is LDA error, κ(U0) denotes the condition number of the
temporal correlation matrix U0 = D

−1/2
U

UD
−1/2
U

,DU = diag(u11, · · · , uqq)

If temporal features are independent then K0 = 1 and e2 = e1
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Multi-Step Linear Discriminant Analysis Separable Models

Upper Bound of Error Rate

Figure : The error bound of two-step LDA as a function of the LDA error
rate e1 for several values of κ(U0)
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Multi-Step Linear Discriminant Analysis Impact of Dimensionality on Multi-Step LDA

When µ1,µ2 and Σ are unknown

Given training data G = {(x (i), ki ), i = 1, . . . , n}, #G = n,
ki ∈ {1, 2}, x (i) ∈ Rp, p = p̈q

At the first step, we calculate all δ̂F (x j), j = 1, . . . , q

µ̂kj =
1

nk

∑
ki=k

x
(i)
j , k = 1, 2, α̂j = µ̂1j − µ̂2j ,

Σ̂j =
1

n − 2

2∑
k=1

∑
ki=k

(x
(i)
j − µ̂kj)(x

(i)
j − µ̂kj)

T , δ̂F (x j) = x
T
j Σ̂
−1

j α̂j

The conditional means and covariance matrix of the score
∆̂ = [δ̂F (x1), · · · , δ̂F (xq)]T given by

±1

2
m̃ = E(∆̂ | G) = ±1

2
[m̃1, · · · , m̃q]T , m̃j = αT

j Σ̂
−1

j α̂j , j = 1, . . . , q,

Θ̃ = cov(∆̂, ∆̂ | G) =
q
⊕
j=1

α̂T
j ·

q
⊕
j=1

Σ̂
−1

j ·Σ ·
q
⊕
j=1

Σ̂
−1

j ·
q
⊕
j=1

α̂j
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Multi-Step Linear Discriminant Analysis Impact of Dimensionality on Multi-Step LDA

When µ1,µ2 and Σ are unknown

Σj ∈ Rp̈×p̈

q
⊕
j=1

Σ̂
−1

j =


Σ̂
−1

1 0 · · · 0

0 Σ̂
−1

2 · · · 0
...

...
. . .

...

0 0 · · · Σ̂
−1

q

→


Σ−1
1 0 · · · 0
0 Σ−1

2 · · · 0
...

...
. . .

...

0 0 · · · Σ−1
q


‖

q
⊕
j=1

Σ̂
−1
j −

q
⊕
j=1

Σ−1
j ‖ = OP(p̈

√
log p/

√
n)

Σ ∈ Rp×p

‖Σ̂−1 −Σ−1‖ = OP(p
√

log p/
√
n)
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Multi-Step Linear Discriminant Analysis Impact of Dimensionality on Multi-Step LDA

When µ1,µ2 and Σ are unknown

Theorem 9

Suppose that

c−1
0 ≤ all eigenvalues of Σ ≤ c0, (13)

max
j≤q
‖αj‖2 ≤ c0, (14)

where αj ∈ Rp̈, α = [αT
1 , · · · ,αT

q ]T , and p̈
√
q log p/

√
n→ 0. Then

‖Θ̃−Θ‖ = OP(max[
√
p̈/nβ , p̈

√
log p/

√
n ]),

‖m̃ −m‖ = OP(p̈
√
q log p/

√
n)

for every β < 1
2 , m, and Θ as in Theorem 7. If p̈ ≥ nγ with any γ > 0,

‖Θ̃−Θ‖ = OP(p̈
√

log p/
√
n).
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Multi-Step Linear Discriminant Analysis Impact of Dimensionality on Multi-Step LDA

When µ1,µ2 and Σ are unknown

Divide all training data into two parts G = G1 ∪G2, G1 ∩G2 = ∅
such that the sample size of every class in every part equals Ω(n)

Use G1 to calculate δ̂F (x j) = x
T
j Σ̂
−1
j α̂j , j = 1, . . . , q

Use training scores {[δ̂F (x
(i)
1 ), · · · , δ̂F (x

(i)
q )]T , x (i) ∈ G2} to

estimate Θ̂, ±1
2m̂, and δ̂?(x) = [δ̂F (x1), · · · , δ̂F (xq)]Θ̂

−1
m̂

Regularity Conditions of Score ∆

There is a constant c1 (not depending on q) such that

c−1
1 ≤ all eigenvalues of Θ ≤ c1, (15)

c−1
1 ≤ max

j≤q
m2

j ≤ c1, (16)

where m = [m1, · · · ,mq]T and Θ is given by Theorem 7
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Multi-Step Linear Discriminant Analysis Impact of Dimensionality on Multi-Step LDA

Impact of Dimensionality on Two-Step LDA

Corollary 1

If max{p̈
√
q log p, q

√
log q }/

√
n→ 0 and p̈ ≥ nγ with any γ > 0, then

the conditional error rate of δ̂?(x), given G satisfies

W (δ̂? | G) = Φ([1 + OP(max {p̈
√

q log p, q
√

log q }/
√
n )]d?p /2),

d?p = [mTΘ−1
m]1/2 : Mahalanobis distance between two score classes

Remark 6

If p̈ = O(p1/3), q = O(p2/3) then the conditional error rate of δ̂?

W (δ̂? | G) = Φ([1 + OP(p2/3
√

log p/
√
n )]d?p /2), (17)

whereas the error rate of the ordinary LDA, see Shao el al. (2011)

W (δ̂F | G) = Φ([1 + OP(p
√

log p/
√
n )]dp/2) (18)

Nguyen Hoang Huy (DAMI-HUA) Linear Classifiers for High-Dimensional Data January 6, 2014 55 / 71



Multi-Step Linear Discriminant Analysis Impact of Dimensionality on Multi-Step LDA

Impact of Dimensionality on Multi-Step LDA

Multi-step LDA procedure divides all features or scores into
consecutive disjoint subgroups at each step

t = (p̈1, . . . p̈l),
∏l

s=1 p̈s = p where p̈s : size of subgroups at
step s, s = 1, . . . , l is called the type of multi-step LDA

Remark 7

If p̈1 = O(p1/3), p̈2 = O(p2/9), p̈3 = O(p4/9) then error rate
of three-step LDA with type t = (p̈1, p̈2, p̈3) satisfies

W (δ̂?? | G) = Φ([1 + OP(p4/9
√

log p/
√
n)]d??p /2) (19)

where d??p is the Mahalanobis distance between two score
classes at the third step
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Multi-Step Linear Discriminant Analysis Impact of Dimensionality on Multi-Step LDA

Impact of Dimensionality on Multi-Step LDA

Remark 8

The error rate of δ̂l? with optimal type t = (p̈1, . . . p̈l) satisfies

W (δ̂l? | G) = Φ([1 + OP(p

9

6l+2+
(−1)l+1

2l−1
√

log p/
√
n)]d l?

p /2)

where d l?
p is the Mahalanobis distance between two score

classes at the l-th step

We can divide all training data into l parts using for l-step
LDA such that the sample size of every class in every part
equals Ω(n/ log p)
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Applications of Multi-Step Linear Discriminant Analysis

EEG-based Brain-Computer Interfaces

Brain-Computer Interfaces (BCIs) enable users to control electronic
devices or computers by using only their brain activity

An EEG-based BCI classifies brain activity during differential tasks

into differential classes based on their associated EEG signals
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Applications of Multi-Step Linear Discriminant Analysis

Binary Classification Problem

The assumption that observations being normally distributed with
common covariance matrix holds well enough for BCI data, see
Blankertz et al. (2011), Frenzel et al. (2011)
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Applications of Multi-Step Linear Discriminant Analysis

Separability

Separability is a proper assumption for EEG data, Huizenga et al. (2002)

Figure : Covariance matrix estimated from 4 time points and 32 locations
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Applications of Multi-Step Linear Discriminant Analysis

Defining the Feature Subgroups of Two-Step LDA

Figure : Comparison for condition numbers of correlation matrices betwe-
en spatial and temporal features using 30 datasets, see Huy et al. (2012)

Remark 9

Feature subgroup x j should contain all features at time point j
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Applications of Multi-Step Linear Discriminant Analysis

Learning Curves

Brain-Computer Interface data from 9 subjects, see Frenzel
et al. (2011)

Each dataset contain 7290 samples

Train classifiers using the first n samples, with 200 ≤ n ≤ 3500

and apply them to the remain ones

Number of features p = 1024

Since one of two classes are rare error rate is not a meaningful
performance measure

AUC value is often used as a standard measure of
classification performance

AUC = 1 represents a perfect separation
AUC = 0.5 represents a worthless separation
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Applications of Multi-Step Linear Discriminant Analysis

Learning Curves

Figure : Performance of multi-step LDA with type (2, 2, 2, 2, 2, 2, 2, 2, 2,
2), two-step LDA, regularized LDA, LDA, Huy et al. (2012)

Two-step LDA showed better performance than regularized LDA

Multi-step LDA showed faster convergence than regularized LDA
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Applications of Multi-Step Linear Discriminant Analysis

Classification Performance

Using 30 Brain-Computer Interface datasets, see Frenzel et al.
(2011)

The number of samples of each dataset is from 450 to 477

Train classifiers using the first n samples, with 100 ≤ n ≤ 250
and apply them to the remain ones

The dimension of x : p = 1024

The regularization parameter of regularized LDA was estim-
ated by both the analytic formula (oprlda) as in Schäfer and
Strimmer (2005) and cross-validation (cvrlda)
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Applications of Multi-Step Linear Discriminant Analysis

Classification Performance

n = 100(≈ 1min) 125 150 175 200 225 250

lda 0.770 0.772 0.782 0.792 0.801 0.813 0.816

cvrlda 0.789 0.802 0.810 0.813 0.822 0.835 0.839

oprlda 0.782 0.792 0.803 0.809 0.816 0.826 0.830

tslda 0.747 0.777 0.796 0.810 0.822 0.837 0.847

mtslda1 0.806 0.822 0.836 0.843 0.856 0.862 0.865

mtslda2 0.808 0.819 0.828 0.837 0.841 0.844 0.850

mtslda3 0.808 0.819 0.833 0.841 0.846 0.852 0.856

mtslda4 0.821 0.831 0.844 0.849 0.858 0.865 0.869
mtslda5 0.787 0.808 0.824 0.831 0.842 0.850 0.853

Table : Average AUC values of LDA, regularized LDA, two-step LDA (tslda), multi-

step LDA with type (16, 2, 2, 2, 2, 2, 2) (mtslda1), (2, 2, 2, 2, 2, 2, 2, 2, 2, 2) (mtslda2),

(4, 8, 2, 2, 2, 2, 2) (mtslda3), (8, 4, 2, 2, 2, 2, 2) (mtslda 4), (32, 2, 2, 2, 2, 2) (mtslda5)

Except for type (32, 2, 2, 2, 2, 2) (mtslda5) multi-step LDA showed better
performance than regularized LDA

The performance of two-step LDA, mtslda5 is worse for small n (n = 100)
but better for large n (n = 250) due to the impact of dimensionality
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Applications of Multi-Step Linear Discriminant Analysis

Classification Performance

Figure : Performance comparison of multi-step LDA with type (16, 2, 2, 2, 2, 2,

2) and regularized LDA for 30 Brain-Computer Interface datasets. Statistical

significance p values were computed using a Wilcolxon signed rank test.

The medians of AUCs of multi-step LDA are higher than regularized LDA

p-value decreases until n = 175 and then increases since multi-step LDA

achieves the faster convergence rate than regularized LDA
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Conclusions

Conclusions

Our method avoids estimation of the high-dimensional
covariance matrix by applying LDA in several steps

In the case of separable models, the theoretical loss in efficie-
ncy of two-step LDA in comparison to LDA is not very large

For our EEG data, multi-step LDA performed better than
regularized LDA which is the state-of-the-art classification
method, see Blankertz et al. (2011)

Multi-step LDA has faster convergence rate than LDA

Conjecture

The error rates of independence rule, two-step LDA, and LDA:

W (δI ) ≤W (δ?) ≤W (δF )
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THANK YOU!
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5. P. Bühlmann and S. van de Geer. Statistics for High-Dimensional Data:
Methods, Theory and Applications. Springer Series in Statistics.
Springer, 2011.

6. T. Cai and W. Liu. A direct estimation approach to sparse linear
discriminant analysis. Journal of the American Statistical Association,
106(496):1566-1577, December 2011.

7. J. Fan and Y. Fan. High-Dimensional Classification Using Features
Annealed Independence Rules. The Annals of Statistics, 36(6):2605-2637,
December 2008.

8. S. Frenzel, E. Neubert, and C. Bandt. Two communication lines in a 3×3
matrix speller. Journal of Neural Engineering, 8(3):036021, May 2011.

Nguyen Hoang Huy (DAMI-HUA) Linear Classifiers for High-Dimensional Data January 6, 2014 69 / 71



References

References

9. H. M. Huizenga, J. C. De Munck, L. J. Waldorp, and R. P. P. P. Grasman.
Spatiotemporal EEG/MEG Source Analysis Based on a Parametric Noise
Covariance Model. IEEE Transactions on Biomedical Engineering,
49(6):533-539, June 2002.

10. D. J. Krusienski, E. W. Sellers, D. J. McFarland, T. M. Vaughan, and J. R.
Wolpaw. Toward enhanced P300 speller performance. Journal of Neuroscience
Methods, 167(1):15-21, January 2008.

11. S. G. Mallat. A Theory for Multiresolution Signal Decomposition: The Wavelet
Representation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 11(7):674-693, July 1989.

12. S. G. Mallat and Z. Zhang. Matching Pursuits With Time-Frequency
Dictionaries. IEEE Transactions on Signal Processing, 41(12):3397-3415,
December 1993.

13. E. Neubert. Untersuchung ereigniskorrelierter Potentiale im EEG. Diploma
thesis, Ernst-Moritz-Arndt-Universität Greifswald, May 2010.
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