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Example of single hypothesis testing

Consider the framework where one observes
I X1, X2, . . . , Xn1 ↪→ N (µ1, σ

2) i.i.d.
I Y1, Y2, . . . , Yn2 ↪→ N (µ2, σ

2) i.i.d. and Xi ⊥ Yj
To test hypothesis H0 : {µ1 = µ2} vs H1 : {µ1 6= µ2}, one uses a test
statistic:

T =
X − Y

S
√

1
n1

+ 1
n2

I T |H0 ↪→ Tn1+n2−2

I Rejection region at level α: {|T | > tα
2
;n1+n2−2}

I Type I error:
P(Reject H0|H0 true) = P(|T | > tα

2
;n1+n2−2|H0 true) = α
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Error of single hypothesis testing

Accept H0 Reject H0

H0 True True Negative False Positive
1− α Type I Error α

H0 False False Negative True Positive
Type II Error β 1− β

α = P(Type I Error), Power = 1− P(Type II Error) = 1− β

Decision rule: among all rejection regions that have a type I
error ≤ α, chose the one that has the lowest type II error.
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P -value

Let F0 be the cumulative distribution function (CDF) of test
statistic T under H0.
I One-tailed tests with rejection region {T > t}:

p− value(tobs) = PH0(T > tobs) = 1− F0(tobs)

I One-tailed tests with rejection region {T < t}:

p− value(tobs) = PH0(T < tobs) = F0(tobs)

I Two-tailed tests with rejection region {|T | > |t|}:

p− value(tobs) = PH0(|T | > |tobs|) = 1− F0(|tobs|) + F0(−|tobs|)
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P -value

Remark:
I If under H0, test statistic T is a continuous variable, then
p-value P ↪→ U [0, 1].
Ex: when P = F0(T ), the CDF of p-value under H0

PH0(P < x) = PH0(F0(T ) < x) = PH0(T < F−10 (x))

= F0(F
−1
0 (x)) = x,∀x ∈ [0, 1]

I Test at level α based on p-value: reject null hypothesis H0

when P < α.
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Multiple hypothesis testing

Applications:
I Microarray analysis
I Signal detection
I Astrophysics
I . . .

Example: in a microarray analysis, we aim at finding the genes
that are differentially expressed between the two conditions.
I first cond.: tumor cells; second cond.: healthy cells.
I two independent samples:

(Y 1, . . . , Y n1) iid N (µ1,Σ) and (Z1, . . . , Zn2) iid N (µ2,Σ)

I Y j
i (resp. Zji ): the expression level of the i-th gene for the
j-th individual of the first (resp. second) condition.
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Multiple hypothesis testing

Example:
I µ1, µ2 ∈ Rn, Σ diagonal covariance matrice.
I {1 ≤ i ≤ n : µ1i 6= µ2i} ≡ {differentially expressed genes}.
I test simultaneously n hypotheses

H0,i : ”µ1i = µ2i” against H1,i : ”µ1i 6= µ2i”.

Example:

I A typical microarray experiment: test 10000 hypotheses.
I Suppose H0 is true in all cases, use the standard p-value

cut-off of 0.05 for each test.
I This procedure makes on average 500 false positives.

 to correct a priori the level of the single tests in order to
obtain the ”quantity” of false positives that is below a nominal
level α.
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”Quantity” of false positives

Table : Possible outcomes from testing n hypotheses H1, . . . ,Hn.

Accept H i Reject H i Total
H i true TN FP n0
H i false FN TP n1
Total W R n

Approaches to control Type I Errors:

I Family-wise error rate (FWER): FWER = P(FP ≥ 1)

I False discovery rate (FDR):
FDR = E

[ FP
max(R,1)

]
= E

( FP
R

∣∣R > 0
)
P(R > 0)

I Positive false discovery rate (pFDR): pFDR = E
( FP

R

∣∣R > 0
)
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”Quantity” of false negatives

Table : Possible outcomes from testing n hypotheses H1, . . . ,Hn.

Accept H i Reject H i Total
H i true TN FP n0
H i false FN TP n1
Total W R n

Approaches to control Type II Errors:

I False non-discovery rate (FNR):
FNR = E

[ FN
max(W,1)

]
= E

( FN
W

∣∣W > 0
)
P(W > 0)

I Positive false non-discovery rate (pFNR):
pFNR = E

( FN
W

∣∣W > 0
)
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Multiple testing procedure (MTP)

Definitions:
I A MTP := a random subset R of {1, . . . , n} that the indexes

selected correspond to the rejected null hypotheses.
I The MTP based on the p-value family p = {pi, 1 ≤ i ≤ n}:

R(p) = {1 ≤ i ≤ n : pi ≤ t(p)}.
I FDR control procedure: find a rejection region Γ (find a

threshold t(p)) whose FDR ≤ α.
We shall call an FDR procedure
I valid if it controls the FDR at a level α,
I efficient (optimal) if it has the smallest FNR among all FDR

procedures at level α.
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FDR control procedures

Benjamini & Hochberg [1995] procedure
I Order p-values p(1) ≤ . . . ≤ p(n).
I Let k̂ = max{1 ≤ i ≤ n : p(i) ≤ iα/n}
I Reject all H(i) for i = 1, . . . , k̂

(threshold t(p) = pk̂).
The BH procedure over-controls FDR: FDRBH ≤ θα, where θ is the
proportion of true null hypotheses.
 apply the BH procedure at level α/θ̂ to improve power,
where θ̂ is an estimator of θ (Benjamini & Hochberg, 2000;
Genovese & Wasserman, 2004; Blanchard & Roquain, 2009;
Liang & Nettleton, 2012; . . .).
I Compute an estimator of θ as θ̂
I Reject all H(i) for i = 1, · · · , l̂, where

l̂ = max{i : p(i) ≤ iα
nθ̂
} ≥ k̂.
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Mixture model in multiple testing setup

Notation:
I Test simultaneously n hypotheses with p-values P1, . . . , Pn.
I Under H0, Pi ∼ U([0, 1]); under H1, Pi ∼ F1 unknown
I θ: the proportion of true null hypotheses.

The CDF of Pi is a mixture:

F (x) = θx+ (1− θ)F1(x), for x ∈ [0, 1],

and the density function of Pi is

f(x) = θ1[0,1](x) + (1− θ)f1(x),

where f1 is an unknown density on [0, 1].
I Parameters of the model: (θ, f1).
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Storey’s estimators

Reasonable assumption: f1 is non-increasing with f1(1) = 0.
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f̂I : a histogram estimator of f . Storey
(2000) suggested an estimator:

θ̂n(λ) =
#{Pi > λ : 1 ≤ i ≤ n}

n(1− λ)

= f̂I(x), for x ∈ [λ, 1].
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Storey’s estimator

Properties of Storey’s estimator

I As λ increases, the bias decreases while the variance
increases.

I θ̂n(λ) is unbiased if and only if f1|[λ,1] = 0

I Oracle estimator: if f1|[λ∗,1] = 0 then
√
n
(
θ̂n(λ∗)− θ

) d−−−→
n→∞

N
(
0, θ
(

1
1−λ∗ − θ

))
.

Choice of the parameter λ

I Fixed choice: use predetermined values of λ
I λ = 1/2: the most popular choice

I Dynamic choice: use data to choose λ dynamically
I Benjamini et al. (2000), Storey (2002), Nettleton et al. (2006);

Gavrilov et al. (2009), . . . choose λ dynamically
I Celisse & Robin (2010): choose λ based on a cross-validation

method
19



Some other estimators of θ

With the assumption f1(1) = 0, estimate θ by f̂(1), where f̂ is a
nonparametric density estimator of f .
I Langaas et al. (2005): the Grenander estimator of

monotone density
I Based on kernel density estimation, Neuvial (2013) proposes

an estimator converging to θ at rate n−k/(2k+1)ηn, where
ηn → +∞ and k controls the regularity of f1 near x = 1.

 Can we construct an estimator of θ converging at
parametric rate? with optimal asymptotic variance?
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Our results

Define, for λ∗ ∈ (0, 1]

Fλ∗ = {f1 : [0, 1] 7→ R+, non increasing density, positive on
[0, λ∗) and such that f1|[λ∗,1] = 0}.

Two different cases: λ∗ < 1 and λ∗ = 1

I λ∗ = 1: It does not exist any estimator of θ converging at
parametric rate.

I λ∗ < 1: we can construct estimators converging at
parametric rate but they are not asymptotically efficient
(i.e. attain the optimal asymptotic variance).
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Case λ∗ < 1: estimators with parametric rate (I)

A histogram based estimator

f̂I : a histogram estimator of f .
Define an estimator of θ as

θ̂I,n = min
x∈[0,1]

f̂I(x)
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Theorem
Suppose that f1 ∈ F∗λ with λ∗ < 1 and I is fine enough, then the
estimator θ̂I,n has the following properties

i) θ̂I,n converges almost surely to θ,

ii) lim sup
n→∞

nE
[
(θ̂I,n − θ)2

]
< +∞.
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Case λ∗ < 1: estimators with parametric rate (II)

Celisse & Robin [2010]’s procedure

θ̂CRn : estimator proposed by
Celisse & Robin (2010)
λ̂: chosen adaptively based on
cross-validation method.

Theorem
Under some assumptions, the estimator θ̂CRn has the following
properties

i) θ̂CRn converges almost surely to θ,

ii) θ̂CRn is
√
n-consistent, i.e.

√
n(θ̂CRn − θ) = OP(1),

iii) If the parameter p in leave-p-out estimator is fixed then
lim sup
n→∞

nE
[
(θ̂CRn − θ)2

]
< +∞.
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Asymptotic efficiency

In semi-parametric setup: P = {Pθ,η : θ ∈ Θ, η ∈ F}, with Θ ⊂ R
an open set and F an infinite dimension set of densities.
I The ordinary score function: l̇θ,η = ∂

∂θ log dPθ,η.
I A tangent set for η:

Ṗη =
{
∂
∂t

∣∣
t=0

log dPθ,ηt : for suitable paths t 7→ ηt in F
}

I The efficient score function: l̃θ,η = l̇θ,η −Πθ,η l̇θ,η, where Πθ,η is
the orthogonal projection onto linṖη in L2(Pθ,η).

I The efficient information: Ĩθ,η = Eθ,η l̃2θ,η
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Asymptotic efficiency

Definition: an estimator θ̂n is asymptotically efficient (asympt.
eff.) if and only if it satisfies

√
n(θ̂n − θ) = 1√

n

∑n
i=1 Ĩ

−1
θ,η l̃θ,η(Xi) + oPθ,η(1).

I By the central limit theorem and Slutsky’s theorem,
√
n(θ̂n − θ)

Pθ,η
 N(0, Ĩ−1θ,η ).

I The LAM theorem: the optimal variance is Ĩ−1θ,η .
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Asymptotic efficiency

In our mixture model:

Pλ∗ =
{
Pθ,f1 ;

dPθ,f1
dµ = θ + (1− θ)f1; (θ, f1) ∈ (0, 1)×Fλ∗

}
.

Proposition: The efficient score function l̃θ,f1 and the efficient
information Ĩθ,f1 for estimating θ in model Pλ∗ are given by

l̃θ,f1(x) = 1
θ −

1
θ[1−θ(1−λ∗)]1[0,λ∗)(x) and Ĩθ,f1 = 1−λ∗

θ[1−θ(1−λ∗)] .

Corollary
I When λ∗ = 1, we have Ĩθ,f1 = 0, then there is no estimator of
θ converging at parametric rate.

I When λ∗ < 1, an estimator θ̂n of θ is asympt. eff. if and only if
it satisfies

θ̂n =
#{Xi > λ∗ : 1 ≤ i ≤ n}

n(1− λ∗)
+ oPθ,f1 (n−1/2),

with the optimal variance equal to θ
(

1
1−λ∗ − θ

)
.
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Existence of asympt. eff. estimators

For an estimator l̂n,θ(·) = l̂n,θ(·;X1, . . . , Xn) of l̃θ,f1 and every
sequence θn = θ +O(n−1/2), introduce the following conditions

√
nPθn,f1 l̂n,θn

Pθ,f1−−−→
n→∞

0, (1)

Pθn,f1‖l̂n,θn − l̃θn,f1‖2
Pθ,f1−−−→
n→∞

0 (2)

Proposition

I The existence of asympt. eff. estimators of θ ⇐⇒ the
existence of estimators l̂n,θ of l̃θ,f1 satisfying (1) and (2).

I If l̃θ,f1 is estimated through a plug-in estimate λ̂n of λ∗, then
this condition is equivalent to

√
n(λ̂n − λ∗) = oP(1).

Existence
I Irregular models: f1 has a jump point at λ∗, YES
I Regular models: conjecture that NO
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Perspectives

I How do we choose the finest partition in Celisse & Robin’s
adaptive histogram procedure? (model selection?)

I What about non iid setup? (Hidden Markov models, Sun &
Cai, 2009)

I Let Hi =

{
0 if the null hypothesis i is true,
1 otherwise

I the unobservable sequence {Hi}n1 is a Markov chain
I the variables Pi|Hi, i = 1, . . . , n are independent.
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Thank you for your attention!
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