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OUTLINE

= 1 - Radiations

= 2 - The particle-material interaction

» 3 - The stopping power

= 4 - Effect due to Nuclear vs. Electronic stopping
process;

= 5 - Applications



1 - Radiation

= Radiation = the emission or transmission of
energy in the form of waves or particles



1 - Radiation

= (Classification

Radiations
4
EM - waves Particles
lv A
Non —ionizing I ndirectlyl— ionizing Charged Un—chc‘}rged
* Radar « X —rays * o — particles *neutron
* Radio %Y —rays x B~ — particles *neutrino
+ IR (heat) * 37 — particles
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Carry enough energy to produce ions, i.e.
ionizing materials (if deposited in matter)




2 - Radiation-materials interactions

= 2 types of interactions:

2 types interactions

)

. v . . ) v )

Directimpact Inelastic interactions
v
v v v
heavy particles Photon with materials Charged particles
with materials * Photo-electric effects with materials
* proton, neutron * Compton scattering * Coulombian interaction
%0l 10NS * Pair production with electron and nucleus




2 - Radiation-materials interactions

= Photon with mater: 3 modes

e Photo-electric effect

Entire energy transfer from
photon to an atomic electron

* Compton-scattering effect _

Fraction of energy transferred
to Compton electrons.

* Pair production
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2 - Radiation-materials interactions

= Coulombian interaction

e Coulomb interactions R

with atomic electrons. S8y —

(ionization, excitation)

Coulomb interactions g
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(multiple Coulomb scattering)

“Inelastic nuclear collision!”
Severely breaking chemical bond at
high speed (energy)
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2 - Radiation-materials interactions

* The “directimpact”
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m19E1 m2 ’./

o Hypothesis
* Thermal vibration of atoms is negligible
* Atoms are supposed to be “immobile”

* Interaction with electron is too small to be able to affect the
elastic collision



2 - Radiation-materials interactions

* The “directimpact”
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o Elastic scattering: internal state of colliding partners
unchanged

E, =E,+E,=(E,-T)+T
o Inelastic scattering: excitation and ionization of
colliding partners

E.=E/ +E, +Q=E;+T+Q



2 - Radiation-materials interactions

* The “directimpact”
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o Energy transfer
T=T_ cos’0,
y 4m,m,

T = E
max (m1+m2)2

1

\



2 - Radiation-materials interactions

* The “directimpact” /Energy transfer
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2 - Radiation-materials interactions

* The “direct impact”/Characteristics

O
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Direct impact = 1-to-1 collision

Energy transfer is often superior to the
“displacement threshold” of atom (minimum
energy needed to permanently displace an
atom from its regular lattice site) = easily
create a defect in mater

Collision probability becomes important when
the energy of radiation is low (< 1 MeVl/)

Energy transfer in discrete amount



3 — The stopping power
* Energy loss (Energy deposed to materials)

Ax : thickness of target

N(Ax)
T

i=1

N

N (Ax): total number of collisions

T. : energy lost in collision i

L L

» Elastic and inelastic processed
(AE(Ax))=(AE, (Ax))+(AE, (Ax))
= Stopping power (stopping force)

(L) ()

Ax—0 A X cx cx



3 — The stopping power

= Characteristics

o Depends on the energy of radiation

o Depends on the materials (target) through which it
passes

o Depends on types of interactions (dominant by
electronic interaction at high energy and dominant by
nuclear interaction at low energy, i.e. at the end of its
path)

o Usually considered as a properties of materials (even
though it depends on type and energy of radiation)



3 — The stopping power

= Electronic vs. nuclear stopping power

40 T TTTTT T TTTITT T TTTTI T TTTITT T TTTTI T TTTTT T TTTT T T TTTTT T T TTTTTT T T TTTTT T T TTTTTT

—— Electronic stopping power of Cerium in UO,
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—— The stopping power of Cerium in UO-
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4 - Effects due to stopping process

» Effects of nuclear stopping process/Collision
cascade

'+500 A

0A -- Target Depth -- 1000 A



4 - Effects due to stopping process

= Number of defect created/ “Kinchin and Peace’s

model”
(N(T)=0 if T<E,
IN(T)=1 if E,<T<2E,
N(T)=(T/2)E, if T >2E,
<N(T)>=kT_E1 k=08
2 d
E
<Ntol>: —
2E,

1. G.H.Kinchinand R. S. Pease. The displacement of atoms in solids by radiation. Reports on
Progress in Physics, 18(1):1, 1955




4 - Effects due to stopping process

» Effects of electronic stopping process/
“Ion explosion model”
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dynamics, Europhys. Lett. 2002, 59, 540
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4 - Effects due to stopping process

» Effects of electronic stopping process/
“Latent track”

1. J. Vetter et al. / Nucl. Instr. and Meth. in Phys. Res. B 141 (1998) 747
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4 —
Effects due to stopping process

= Eff
ects of electronic stopping process/
SS

X 0.200 i
. um/div
Z 20.000 nw/div

210 MeV Au

1 structure
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“Latent track”
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Application/Proton therapy

cell cell nucleus chromosome DNA gene
~1mm ~10 pm ~1.5um ~2 nm <=1 nm

CaCh B 2

1mm 01mm 10|Jm 1pm O1pm 10nm 1nm

» [dea: “Selective cell destruction (cancer)”
* How it can be done?

By destroying the cell using Energy
= Why is this possible?



Application/Proton therapy

cell cell nucleus chromosome DNA gene
~1mm ~10 pm ~1.5um ~2 nm <=1 nm

CaCh B 2

1mm 01mm 10|Jm 1pm O1pm 10 nm 1 nm

* Radiations damage a cell by altering it's atom
causing the atom’s electron to become excited and
then ionized

* Enzymes repair this damage but cancer cell slower
than healthy cell

= Results (during radiation exposure): More cancer
cells end up dying than healthy cells



Application/Proton therapy

" In order to treat cancer: The main goal is to
delivers a defined dose distribution within
the target volume and none out side it.

* Choice of radiation: what type of
radiation would be the best?

* Protons can be used clinically.

 Maximum radiation dose can be placed into the
tumor.

* Proton therapy provides sparing of healthy
tissues.



Application/Proton therapy

» Characteristics of proton

o Subatomic particle
o Non-poisonous
o Stable, positively charged

o Heavy particle with mass 1800 that
of electron.

o Very little scattered as they travel
through tissue = travel in straight
lines.

o Interacts via different modes with
matter

m, =1.67(26)-10" kg
m_,=9.10(94) 107" kg



Application/Proton therapy

» Characteristics of proton

¢ e, ...-:I"é:.
o Coulomb interactions with Aey > el
atomic electrons. i B

Electronic (ionization, excitation)

o Coulomb interactions with
atomic nuclei.

“multiple Coulomb scattering.”

o Nuclear interactions with atomic
nuclei.

Interacts with materials via both Elastic nuclear collision
and Inelastic nuclear collision!
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Application/Proton therapy

= Shape of dose distribution

Bragg peak
100 "
.II
80 !
£ J
v 60
é" L]
40 |
*pliili‘".
20 '-
, -
0 o 5 10 15
Depth (cm)

* Low entrance dose (plateau)
» Maximum dose at depth (Bragg peak)
= Rapid distal dose fall-off



Application/Proton therapy
* Why?
* Protons have the ability of loosing little

energy when entering tissue (dominant by
electronic interaction)

* But depositing more and more as they slow
down...

* Finally, depositing a heavy dose of radiation
just before they stop, giving rise to the
so-called Bragg peak (dominant by nuclear
elastic collision)



Application/Proton therapy
" Stopping power?

depth
: (mcl.“?asmg)
: energy and
E, 0 velocity
(decreasin g)

The Bethe-Block formula: dE 12 (Z ) z”
dx v\ A
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Application/Proton therapy

* Could the Bragg peak
provide the tumor with
uniform dose?

= No, it cannot. Because The
Bragg peak is too narrow to
fit the shape & depth of the
tumor

dose

Problem!!!




Application/Proton therapy

* Bragg peak dependence on energy

The range is (the depth of it range i water
penetration from the front 70 1.0
surface to the distal point 100 7.6

150 15.5
on the Bragg peak) o =

250 374
Bragg peak depends on

the initial energy of the
protons so the greater the |t .
energy, the greater the : o
range -




Application/Proton therapy

= Solution: Superposition
of Bragg-peaks by B

10
energy variation s |
08
0.7
D6
05
04}

dose

* An extension in depth can
be achieved by proton 0
beams of successively

0.0

* Delivering not just one,
but many Bragg peaks
each with different range

(energy)

02}
01 F

0 10 20

depth (cm Hz0)



Summary

Proton therapy

They are deterministic events.
They easier to control.

[t receive very small dose.

A sharp burst of energy released
At tumor and none beyond it.
Ideal for tumors in or near

Critical structures (brain, heart, eye) pediatric
cancers.
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QUESTION?
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