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Motivation and definition

Investigating the dynamical problem.

Growth models : Average growth rage / and Instantaneous
growth rage.

Biological/Chemical/Physical (dynamical)/ Geometrical
motivation

The inst. rate of growth= the inst. growth rate
The inst. rate of velocity
The rate of a Chemical Reaction

Average Rate of Change/ Instantaneous Rate of Change
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The derivative as an Instantaneous Rate of Change

Definition

The derivative of a function f at x , denoted by f ′(x), is

f ′(x) = lim
h→0

f (x + h)− f (x)

h
,

provided that the limit exists. In this case we say that f is
differentiable at x .
Leibniz notation df

dx
.

Example 1 : Find the difference quotient at x = 1 and then
f ′(1) for the functions f (x) = x2, g(x) = x3.

Example 2 : Find the derivative f (x) = 1
x

for any x 6= 0.



Geometric interpretation of the derivative

Fact

If f is differentiable at x = c , then f ′(c) is the slope of the
tangent line at the point (c , f (c)) to the graph of f . The
equation of the tangent line is

y = f ′(c)(x − c) + f (c).

Example : Find the tangent line to f (x) = 1
x

at x = 2.



Vertical tangent line

Example 5 page 176 : considering the function y = x1/3 at
x = 0.
There is not derivative at 0 but x = 0 is vertical tangent line
to the graph at (0, 0).



Differentiation of fundamental functions

In the following, u = u(x) is a differentiable function of x .

(xα)′ = α(xα−1), and so (uα)′ = α(uα−1)u′, for any
α ∈ R ;

(sin x)′ = cos x , and so (sin u)′ = u′ cos u

(cos x)′ = − sin x , and so (cos u)′ = −u′ sin u

(tan x)′ = 1
cos2 x

= sec2 x , and so
(tan u)′ = 1

cos2 x
u′ = u′ sec2 u ;

(cot x)′ = − 1
sin2 x

= − csc2 x , and so

(cot u)′ = − 1
sin2 u

u′ = −u′ csc2 u ;

(ex)′ = ex , so (eu)′ = euu′ ;
(ax)′ = (ln a)ax , and so (au)′ = (ln a)auu′, for 0 < a 6= 1 ;

(ln x)′ = 1
x

, and so (ln u)′ = u′

u
;

(loga x)′ = 1
(ln a)x

, and so (ln u)′ = u′

(ln a)u
.



Basic rules of differentiation

(u + v)′ = u′ + v ′,

(ku)′ = ku′, k ∈ R,

(uv)′ = u′v + uv ′,

(
u

v
)′ =

u′v − uv ′

v 2
.



The chain Rule

Chain rule

If u = u(x) is differentiable at x0 and f = f (u) is differentiable
at u0 = u(x0), then the composite function f ◦ u is also
differentiable at x0, and

(f ◦ u)′(x0) = f ′(u0)u′(x0).

This above expression can be written in Leibniz notation as

d

dx
[f ◦ u(x)] =

df

du

du

dx
.



Example 1 : find the derivative of f (x) = (x3 − 2x − 1)3 at
x = 1, and after at any x ?

Solution Set u = x3 − 2x − 1 and f (u) = u3, then
f (x) = f ◦ u(x). For x0 = 1 we get u0 = 13 − 2.1− 1 = −2.
We have f ′(u0) = f ′(−2) = (u3)′ |u=−2= (3u2) |u=−2= 12,
and u′(x0) = u′(1) = (x3 − 2x − 1)′ |x=1= (3x2 − 2 |x=1= 1.
Therefore, f ′(1) = 12.1 = 12.

For any x . We have f ′(u) = (u3)′ = 3u2, and
u′(x) = (x3 − 2x − 1)′ = 3x2 − 2. Therefore,

f ′(x) = f ′(u).u′(x) = 3u2(3x2− 2) = 3(x3− 2x − 1)(3x2− 2).
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Example 2 : find the derivative of radical function

h(x) =
5
√

2x2 + x − 1.

Example 3 : find the derivative of rational function

f (x) = (
x

x + 1
)2, x 6= −1.
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.



Differentiability and Continuity

Theorem

If f is differentiable at c , then it is also continuous at c .

A counter example : f (x) = |x |.



Problems

Explaining the following notations

1 Average velocity, instantaneous velocity, speed (page
171) ?

2 Instantaneous population growth rate at time ? The
instantaneous per capita population growth rate at time
(page 172, 188) ? . Ex 37, 41 page 178. Ex 31, 32, 33
page 242.

3 The rate of Chemical reaction (page 23, 172) ? Ex 29, 30
page 44. Ex 39, 40 page 179.

4 Tilman’s model for resource competition (page 173) ? .
The specific rate of change of biomass (page 25) ?
Example 3 page 188, Ex 35 page 178, Ex 45 page 193.

5 Logitic growth (page 141) ? Ex 62, 63 page 222, Ex 27,
28, 29 page 142.

6 Radioactive (page 220) ? Ex 66-73 page 222.



Chapter 4. Differentiation

Implicit function and Implicit differentiation (page 200)

Considering the equation of the form

F (x , y) = 0.

With certain suitable conditions, this equation may define
(implicitly) y as an function of x , that means y = f (x) such
that F (x , f (x)) = 0. This function may be even differentiable.
Can we express y ′(x) (or dy

dx
) in terms of x and y ?

Example : find dy
dx

if x4 + y 2 = 1.
We differentiate both sides of the equation with respect to x ,
noting that y is function of x we get

4x3 + 2y
dy

dx
= 0.

Now we can solve for dy
dx

and find that

dy

dx
= −2

x3

y
.
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Higher derivatives : n times differentiable

Let f be a function. If there exists f ′, it is called the first
derivative and we say that f is once differentiable.
The second derivative, denoted by f ′′ is f ′′ = (f ′)′ if it
exists. Then we say that f is twice differentiable.
The same way for the third derivative, denoted f ′′′,
and for higher derivatives f (4), f (5) etc.
Example : let f (x) =

√
x , x ≥ 0. We can rewrite f (x) = x1/2,

so the first derivative is f ′(x) = 1
2
x1/2−1 = 1

2
x−1/2 for x > 0.

The higher derivatives

f ′′(x) = (
1

2
)(−1

2
)x−1/2−1 = −1

4
x−3/2,

f ′′′(x) = −1

4
(−3

2
)x−3/2−1 =

3

8
x−5/2, ...



Linearization (page 235)

Assume that f is differentiable at c , then the tangent line
approximation or the linearization of f (x) at x = c is

L(x) = f (c) + f ′(c)(x − c),

and f (x) ≈ L(x) for x near c .



Chapter 4. Differentiation

Problems

4.1.1 Problems, page 177-.
4.2.1 Problems, page 183-.
4.3.3 Problems, page 192-.
4.4.5 Problems, page 208-.
4.5.1 Problems, page 215-.
4.6.1 Problems, page 221-.
4.7.4 Problems, page 233-.
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