Maths 17 A

Phan Quang Sang

Vietnam National University of Agriculture

Hanoi, 11 septembre 2016 http://www.vnua.edu.vn/khoa/fita/pqsang/

5900

Sommaire

1 Chapter 4. Differentiation

- Motivation and definition
- Differentiation of fundamental functions
- Basic rules of differentiation
- Problems
- Implicit function and Implicit differentiation (page 200)

200

- Higher derivatives
- Linearization
- Problems

Investigating the dynamical problem.

Investigating the dynamical problem.

Growth models : Average growth rage / and Instantaneous growth rage.

99 P

Investigating the dynamical problem.

Growth models : Average growth rage / and Instantaneous growth rage.

 $\label{eq:Biological/Chemical/Physical (dynamical)/ Geometrical motivation$

5900

Investigating the dynamical problem.

Growth models : Average growth rage / and Instantaneous growth rage.

 $\label{eq:Biological/Chemical/Physical (dynamical)/ Geometrical motivation$

900

The inst. rate of growth= the inst. growth rate The inst. rate of velocity The rate of a Chemical Reaction

Investigating the dynamical problem.

Growth models : Average growth rage / and Instantaneous growth rage.

Biological/Chemical/Physical (dynamical)/ Geometrical motivation

The inst. rate of growth= the inst. growth rate The inst. rate of velocity The rate of a Chemical Reaction

Average Rate of Change/ Instantaneous Rate of Change

900

The derivative as an Instantaneous Rate of Change

Definition

The derivative of a function f at x, denoted by f'(x), is

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h},$$

provided that the limit exists. In this case we say that f is differentiable at x. Leibniz notation $\frac{df}{dx}$.

Example 1 : Find the difference quotient at x = 1 and then f'(1) for the functions $f(x) = x^2$, $g(x) = x^3$.

Example 2 : Find the derivative $f(x) = \frac{1}{x}$ for any $x \neq 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Geometric interpretation of the derivative

Fact

If f is differentiable at x = c, then f'(c) is the slope of the tangent line at the point (c, f(c)) to the graph of f. The equation of the tangent line is

$$y = f'(c)(x-c) + f(c).$$

Example : Find the tangent line to $f(x) = \frac{1}{x}$ at x = 2.

Vertical tangent line

Example 5 page 176 : considering the function $y = x^1/3$ at x = 0.

There is not derivative at 0 but x = 0 is vertical tangent line to the graph at (0, 0).

Sac

Differentiation of fundamental functions

In the following, u = u(x) is a differentiable function of x.

• $(x^{\alpha})' = \alpha(x^{\alpha-1})$, and so $(u^{\alpha})' = \alpha(u^{\alpha-1})u'$, for any $\alpha \in \mathbb{R}$;

•
$$(\sin x)' = \cos x$$
, and so $(\sin u)' = u' \cos u$

•
$$(\cos x)' = -\sin x$$
, and so $(\cos u)' = -u' \sin u$

•
$$(\tan x)' = \frac{1}{\cos^2 x} = \sec^2 x$$
, and so $(\tan u)' = \frac{1}{\cos^2 x}u' = u' \sec^2 u$;

$$(\log_a x)' = \frac{1}{(\ln a)x}$$
, and so $(\ln u)' = \frac{u'}{(\ln a)u}$.

Basic rules of differentiation

$$(u + v)' = u' + v',$$

$$(ku)' = ku', k \in \mathbb{R},$$

$$(uv)' = u'v + uv',$$

$$(\frac{u}{v})' = \frac{u'v - uv'}{v^2}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

The chain Rule

Chain rule

If u = u(x) is differentiable at x_0 and f = f(u) is differentiable at $u_0 = u(x_0)$, then the composite function $f \circ u$ is also differentiable at x_0 , and

$$(f \circ u)'(x_0) = f'(u_0)u'(x_0).$$

This above expression can be written in Leibniz notation as

$$\frac{d}{dx}[f \circ u(x)] = \frac{df}{du}\frac{du}{dx}$$

Example 1 : find the derivative of $f(x) = (x^3 - 2x - 1)^3$ at x = 1, and after at any x?

Example 1 : find the derivative of $f(x) = (x^3 - 2x - 1)^3$ at x = 1, and after at any x? Solution Set $u = x^3 - 2x - 1$ and $f(u) = u^3$, then $f(x) = f \circ u(x)$. For $x_0 = 1$ we get $u_0 = 1^3 - 2.1 - 1 = -2$. We have $f'(u_0) = f'(-2) = (u^3)' |_{u=-2} = (3u^2) |_{u=-2} = 12$, and $u'(x_0) = u'(1) = (x^3 - 2x - 1)' |_{x=1} = (3x^2 - 2 |_{x=1} = 1)$. Therefore, f'(1) = 12.1 = 12.

~ ~ ~ ~ ~

Example 1 : find the derivative of $f(x) = (x^3 - 2x - 1)^3$ at x = 1, and after at any x? Solution Set $u = x^3 - 2x - 1$ and $f(u) = u^3$, then $f(x) = f \circ u(x)$. For $x_0 = 1$ we get $u_0 = 1^3 - 2.1 - 1 = -2$. We have $f'(u_0) = f'(-2) = (u^3)' |_{u=-2} = (3u^2) |_{u=-2} = 12$, and $u'(x_0) = u'(1) = (x^3 - 2x - 1)' |_{x=1} = (3x^2 - 2) |_{x=1} = 1$. Therefore, f'(1) = 12.1 = 12.

For any x. We have
$$f'(u) = (u^3)' = 3u^2$$
, and
 $u'(x) = (x^3 - 2x - 1)' = 3x^2 - 2$. Therefore,
 $f'(x) = f'(u).u'(x) = 3u^2(3x^2 - 2) = 3(x^3 - 2x - 1)(3x^2 - 2)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Example 2 : find the derivative of radical function

$$h(x)=\sqrt[5]{2x^2+x-1}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Example 2 : find the derivative of radical function

$$h(x) = \sqrt[5]{2x^2 + x - 1}.$$

Example 3 : find the derivative of rational function

$$f(x) = \left(\frac{x}{x+1}\right)^2, x \neq -1.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Differentiation of fundamental functions

In the following, u = u(x) is a differentiable function of x.

• $(x^{\alpha})' = \alpha(x^{\alpha-1})$, and so $(u^{\alpha})' = \alpha(u^{\alpha-1})u'$, for any $\alpha \in \mathbb{R}$;

•
$$(\sin x)' = \cos x$$
, and so $(\sin u)' = u' \cos u$

•
$$(\cos x)' = -\sin x$$
, and so $(\cos u)' = -u' \sin u$

•
$$(\tan x)' = \frac{1}{\cos^2 x} = \sec^2 x$$
, and so $(\tan u)' = \frac{1}{\cos^2 x}u' = u' \sec^2 u$;

$$(\log_a x)' = \frac{1}{(\ln a)x}$$
, and so $(\ln u)' = \frac{u'}{(\ln a)u}$.

Differentiability and Continuity

Theorem

If f is differentiable at c, then it is also continuous at c.

5900

A counter example : f(x) = |x|.

Problems

Explaining the following notations

- Average velocity, instantaneous velocity, speed (page 171)?
- Instantaneous population growth rate at time? The instantaneous per capita population growth rate at time (page 172, 188)? . Ex 37, 41 page 178. Ex 31, 32, 33 page 242.
- The rate of Chemical reaction (page 23, 172)? Ex 29, 30 page 44. Ex 39, 40 page 179.
- Tilman's model for resource competition (page 173)?
 The specific rate of change of biomass (page 25)?
 Example 3 page 188, Ex 35 page 178, Ex 45 page 193.
- Logitic growth (page 141)? Ex 62, 63 page 222, Ex 27, 28, 29 page 142.

590

• Radioactive (page 220)? Ex 66-73 page 222.

Considering the equation of the form

F(x,y)=0.

With certain suitable conditions, this equation may define (implicitly) y as an function of x, that means y = f(x) such that F(x, f(x)) = 0. This function may be even differentiable. Can we express y'(x) (or $\frac{dy}{dx}$) in terms of x and y?

イロト イポト イヨト イヨト

Considering the equation of the form

$$F(x,y)=0.$$

With certain suitable conditions, this equation may define (implicitly) y as an function of x, that means y = f(x) such that F(x, f(x)) = 0. This function may be even differentiable. Can we express y'(x) (or $\frac{dy}{dx}$) in terms of x and y? **Example** : find $\frac{dy}{dx}$ if $x^4 + y^2 = 1$. We differentiate both sides of the equation with respect to x, noting that y is function of x we get

$$4x^3 + 2y\frac{dy}{dx} = 0.$$

Now we can solve for $\frac{dy}{dx}$ and find that

Phan Quang Sang

Maths 17 A

Higher derivatives : n times differentiable

Let f be a function. If there exists f', it is called **the first** derivative and we say that f is once differentiable. The second derivative, denoted by f'' is f'' = (f')' if it exists. Then we say that f is twice differentiable. The same way for **the third derivative**, denoted f''', and for higher derivatives $f^{(4)}$, $f^{(5)}$ etc. **Example** : let $f(x) = \sqrt{x}, x \ge 0$. We can rewrite $f(x) = x^{1/2}$, so the first derivative is $f'(x) = \frac{1}{2}x^{1/2-1} = \frac{1}{2}x^{-1/2}$ for x > 0. The higher derivatives

$$f''(x) = \left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)x^{-1/2-1} = -\frac{1}{4}x^{-3/2},$$

$$f'''(x) = -\frac{1}{4}\left(-\frac{3}{2}\right)x^{-3/2-1} = \frac{3}{8}x^{-5/2}, \dots$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Linearization (page 235)

Assume that f is differentiable at c, then the tangent line approximation or the linearization of f(x) at x = c is

$$L(x) = f(c) + f'(c)(x - c),$$

900

and $f(x) \approx L(x)$ for x near c.

Problems

4.1.1 Problems, page 177-.
4.2.1 Problems, page 183-.
4.3.3 Problems, page 192-.
4.4.5 Problems, page 208-.
4.5.1 Problems, page 215-.
4.6.1 Problems, page 221-.
4.7.4 Problems, page 233-.

< ∃ >

æ

DQC

THANK YOU VERY MUCH!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで