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For Indefinite Integrals

Example : differentiating the function f (x) = sin(3x2 + 1) by
using the chain rule and after we reverse the procedure interm
of indefinite integrals

∫
cos(3x2 + 1). 6xdx .

Then we generalize the integral of the example to integrals of
the form

I =

∫
f (g(x))g ′(x)dx .

If F is an antiderivative of f (x), then by using the chain rule
we can easily check that

d

dx
F (g(x)) = F ′(g(x))g ′(x).

We can therefore have

I = F (g(x)) + C , C ∈ R.
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Theorem

Let u = g(x), then

I =

∫
f (g(x))g ′(x)dx =

∫
f (u)du = F (u)+C = F (g(x))+C .

(1.1)

Some examples (on blackboard)

(1)
∫

(2x + 1)ex
2+x+1dx .

(2)
∫

1
x . ln x

dx .

(3)
∫

(x + 1)
√
x − 1dx .
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For Definite Integrals

Due to FTC II and by applying the substitution rule we get∫ b

a

f (g(x))g ′(x)dx = F (g(x))|ba =

∫ g(b)

g(a)

f (u) du. (1.2)

Recall that we need to check whether the integrant is
continuous over the integration interval.
There are two ways to calculate the integral : in terms of
variable x , or u. But don’t forget to change the limits of
integration in the second way.

Some examples (on blackboard)

(1)
∫ 1

0
(2x + 1)ex

2+x+1dx . (let u = x2 + x + 1)

(2)
∫ 2

1
3x2+1
x3+x

dx . (let u = x3 + x , result ln 5)

(3)
∫ 1

1/2
1
x2
e

1
x dx . (let u = 1

x
, result e2 − e)
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Construction of the integration by parts rule

Let u = u(x), v = v(x) be differentiable functions, and then
differentiating with respect to x we get

(uv)′ = u′v + uv ′,

and so
uv ′ = (uv)′ − u′v .

Integrating both sides of the above equation with respect to x ,
we have∫

uv ′dx =

∫
(uv)′dx −

∫
u′vdx = uv −

∫
u′vdx .
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Summarizing the last we get the ’Integration by parts rule’
(IBP) :

Theorem

If u = u(x), v = v(x) are differentiable functions, then∫
u(x)v ′(x)dx = u(x)v(x)−

∫
u′(x)v(x)dx , (2.3)

or in the short form∫
udv = uv −

∫
vdu.



Some examples (on blackboard).

Example

(1)
∫
xsinx dx .

(2)
∫
xlnx dx . (result 1

2
x2lnx + C )

(3) Compute the Definite integral
∫ 1

0
xe−xdx . (set u = x ,

v ′ = e−x ; result 1− 2e−1)

(4)
∫
lnx dx (result xlnx − x + C )

(5)
∫ 1

0
x2ex dx (using IBP repeatedly, result e − 2)

(6)
∫
ex cos x dx (using IBP repeatedly, result

1
2
ex(cos x + sin x + C ))
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Problems 7.2.1 and Discussion

In Problems 1-30, evaluate the integrals using integration by
parts.
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THANK YOU VERY MUCH !
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