Vietnam National University of Agriculture Faculty of Information Technology Department of Mathematics

Final exam, Subject No. 01 Course Syllabus math 17B- NH05005 Duration 90 minutes

The school year 2014-2015

Unauthorized materials

Date June , 2015

Exercise 1 (3 points): Use any method to integrate each of the following integrals

a) (1 p.)
$$\int_0^{\left(\frac{\pi}{2}\right)^2} \sin\sqrt{x} \, dx$$
; b) (2 p.) $\int \frac{x^4 + 3x^2 - 3x + 2}{x^3 - x^2} \, dx$.

Exercise 2 (3 points): Considering the definite integral $\int_0^2 (x^2 - x) dx$.

- a) (0,5 p.) Give a partition of the integration interval [0,2] into *n* equal subintervals.
- b) (1.5 p.) Find the Riemann sum for the integrand on [0,2], associated to the above partition and right-hand endpoints.
- c) (0,5 p.) Evaluate the limit of the Riemann sum as n goes to infinite to give the value of the integral.
- d) (0.5 p.) Draw the graph of the function $f(x) = x^2 x$ on [0,2] and give a geometric meaning of the integral.

Exercise 3 (2 points): Show that the following improper integral is convergent $\int_{1}^{+\infty} \frac{1}{\sqrt[3]{x^4+1}} dx$.

Exercise 4 (2 points): Solve the differential equation $(x^2 + 1)y' = xy$.

Vietnam National University of Agriculture Faculty of Information Technology Department of Mathematics

Final Exam, Subject No. 02 Course Syllabus Math 17B- NH05005 Duration 90 minutes

The school year 2014-2015

Unauthorized materials

Date June , 2015

Exercise 1 (3 points): Use any method to integrate each of the following itegrals

a) (1 p.) $\int_0^{\left(\frac{\pi}{2}\right)^2} \cos\sqrt{x} \, dx$; b) (2 p.) $\int \frac{x^4 + 4x^2 + 2x - 1}{x^3 + x^2} \, dx$

Exercise 2 (3 points): Considering the definite integral $\int_0^1 (x^2 + 2x) dx$.

- a) (0,5 p.) Give a partition of the integration interval [0,1] into *n* equal subintervals.
- b) (1 p.) Find the Riemann sum for the integrand on [0,1], associated to the above partition and right-hand endpoints.
- c) (1 p.) Evaluate the limit of the Riemann sum as *n* goes to infinite to give the value of the definite integral.
- d) (0,5 p.) Draw the graph of the function $f(x) = x^2 + 2x$ on [0,1] and give a geometric meaning of the definite integral.

Exercise 3 (2 points): Show that the following improper integral is divergent $\int_{1}^{+\infty} \frac{1}{\sqrt[3]{x^2+1}} dx$.

Exercise 4 (2 points): Solve the differential equation $y' = y^2 \sin x$.

Exercise		Brief solution of the Final Exam, Subject No. 01	Point
		Course Syllabus Math 17B- NH05005	
		Duration 90 minutes- Date June , 2015	
1	a)	Use the substitution $t = \sqrt{x}$, hence $dx = 2tdt$	0.25
(3 p.)		Change the limits of integration $x = 0$, so $u = 0$; $x = \left(\frac{\pi}{2}\right)^2$, so $u = \frac{\pi}{2}$;	0.25
		The initial integral becomes $2 \int_0^{\frac{\pi}{2}} t \sin t dt$	0.25
		By IBP we get $2\int_{0}^{\frac{\pi}{2}} t \sin t dt = -2\int_{0}^{\frac{\pi}{2}} t d(\cos t) dt$	0.25
		$= -2 \left[[t \cos t]_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} \cos t dt \right]$	0.25
		= $-2\left[\left[t\cos t\right]_{0}^{\frac{\pi}{2}} - \left[\sin t\right]_{0}^{\frac{\pi}{2}}\right] = 2.$	0.25
	b)	Making the long division $\frac{x^4 + 3x^2 - 3x + 2}{x^3 - x^2} = x + 1 + \frac{4x^2 - 3x + 2}{x^3 - x^2}$,	0.25
		and partial fraction: $\frac{x^4 + 3x^2 - 3x + 2}{x^3 - x^2} = x + 1 + \frac{1}{x}$	0.25
		$-\frac{2}{x^2}$	0.25
		$+\frac{3}{x-1}$	0.25
		Hence the integral is equal to $\frac{x^2}{2} + x + \ln x + \frac{2}{x} + 3\ln x-1 + C$, for $C \in \mathbb{R}$.	0.25 0.25
(2, m)	a)	The width of a subinterval is $\Delta_k = \frac{2-0}{n} = \frac{2}{n}$,	0.25
(3 p.)		hence the partition is given by the subintevals $[x_k, x_{k+1}]$, where $x_0 = 0, x_1 = 1, \frac{2}{n}, x_2 = 2, \frac{2}{n}, \dots, x_k = k, \frac{2}{n}, \dots, x_n = n, \frac{2}{n} = 2$.	0.25
		Choosing $c_k = x_k = k \cdot \frac{2}{n}, k = 1,, n,$	0.25
	b)	then the Riemann sum associated is	
		$\sigma_n = \frac{2}{n} \sum_{k=1}^n (x_k^2 - x_k) = \frac{2}{n} \left[\sum_{k=1}^n (k \cdot \frac{2}{n})^2 - \sum_{k=1}^n k \cdot \frac{2}{n} \right]$	0.25
		$=\frac{2}{n}\left[\frac{4}{n^{2}}\sum_{k=1}^{n}k^{2}-\frac{2}{n}\sum_{k=1}^{n}k\right]$	0.25
		$= \frac{2}{n} \left[\frac{4}{n^2} \frac{n(n+1)(2n+1)}{6} - \frac{2}{n} \frac{n(n+1)}{2} \right]$	0.25
		$=\frac{2(n^2+3n+2)}{3n^3}.$	0.25

	c)	$\lim_{n\to\infty}\sigma_n=\frac{2}{3},$	0.25
		hence the integral is $\frac{2}{3}$.	0.25
	d)	Draw the graph of the function $f(x) = x^2 - x$ on [0,2].	0.25
		A geometric meaning of the definite integral: its value, $\frac{2}{3}$ is the area of the region enclosed by the graph of <i>f</i> , the <i>x</i> -axis, and the vertical line $x = 2$.	0.25
3 (2 p.)		For every $x \ge 1$ we have $x^4 + 1 > x^4 > 0$, and so $0 < \frac{1}{\sqrt[3]{x^4+1}} \le \frac{1}{\sqrt[3]{x^4}} = x^{-4/3}.$	0.25 0.25
		On the other hand the impoper integral $\int_{1}^{+\infty} x^{-4/3} dx = \left[\frac{x^{-1/3}}{-1/3}\right]_{1}^{\infty} = 3$ is convergent,	1
		therefore the given integral is also convergent by comparison.	0.5
4		It is clear that $y \equiv 0$ is a particular solution of the equation. (1)	0.25
(2 p.)		If $y \neq 0$, separating variables we get $\frac{dy}{y} = \frac{xdx}{x^2 + 1}$	0.25
		Integrate the above equation $\int \frac{dy}{y} = \int \frac{xdx}{x^2+1},$	0.25
		$\int \frac{dy}{y} = \frac{1}{2} \int \frac{d(x^2+1)}{x^2+1}, \text{ so}$	0.25
		$ln y = \frac{1}{2}ln(x^2 + 1) + ln D$, for $D > 0$.	0.25 0.25
		Therefore $y = C\sqrt{x^2 + 1}$, for $C \neq 0$. (2)	0.25
		Sumarizing (1) and (2) we conclude that every solution of the differential equation is of the form $y = C\sqrt{x^2 + 1}$, for $C \in \mathbb{R}$.	0.25

Exercise		Bref solution of the Final Exam, Subject No. 02	Point
		Course Syllabus Math 17B- NH05005	
		Duration 90 minutes- Date June , 2015	
1	a)	Use the substitution $t = \sqrt{x}$, hence $dx = 2tdt$	0.25
(3 p.)		Change the limits of integration $x = 0$, so $u = 0$; $x = \left(\frac{\pi}{2}\right)^2$, so $u = \frac{\pi}{2}$;	0.25
		The initial integral becomes $2\int_{0}^{\frac{\pi}{2}} t \cos t dt$	0.25
		By IBP we get $2\int_{0}^{\frac{\pi}{2}} t\cos t dt = 2\int_{0}^{\frac{\pi}{2}} t d(\sin t) dt$	0.25
		$= 2 \left[[t \sin t]_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} \sin t dt \right]$	0.25
		2 $\left[[t \sin t]_0^{\frac{\pi}{2}} + [\cos t]_0^{\frac{\pi}{2}} \right] = \pi - 2.$	0.25
	b)	Making the long division $\frac{x^4 + 4x^2 + 2x - 1}{x^3 + x^2} = x - 1 + \frac{5x^2 + 2x - 1}{x^3 + x^2},$	0.25
		and partial fraction: $\frac{x^4 + 4x^2 + 2x - 1}{x^3 + x^2} = x - 1 + \frac{3}{x}$	0.25
		$-\frac{1}{x^2}$	0.25
		$+\frac{2}{x+1}$	0.25
		Hence the integral is equal to $\frac{x^2}{2} - x + 3ln x + \frac{1}{x} + 2ln x+1 + C$, for $C \in \mathbb{R}$.	0.25 0.25
$\frac{2}{(2 m)}$	a)	The width of a subinterval is $\Delta_k = \frac{2-0}{n} = \frac{2}{n}$,	0.25
(3 p.)		hence the partition is given by the subintevals $[x_k, x_{k+1}]$, where $x_0 = 0, x_1 = 1, \frac{2}{n}, x_2 = 2, \frac{2}{n}, \dots, x_k = k, \frac{2}{n}, \dots, x_n = n, \frac{2}{n} = 2$.	0.25
	b)	Choosing $c_k = x_k = k \cdot \frac{1}{n}, k = 1,, n$,	0.25
	,	then the Riemann sum associated is $\sigma_n = \frac{2}{n} \sum_{k=1}^n (x_k^2 + 2x_k) = \frac{2}{n} \left[\sum_{k=1}^n (k \cdot \frac{2}{n})^2 + 2 \sum_{k=1}^n k \cdot \frac{2}{n} \right]$	0.25
		$= \frac{2}{n} \left[\frac{4}{n^2} \sum_{k=1}^{n} k^2 + \frac{4}{n} \sum_{k=1}^{n} k \right]$	0.25
		$= \frac{2}{n} \left[\frac{4}{n^2} \frac{n(n+1)(2n+1)}{6} + \frac{4}{n} \frac{n(n+1)}{2} \right]$	0.25

	1		T
		$=\frac{4(5n^2+6n+1)}{2n^3}.$	0.25
	c)	$= \frac{4(5n^2 + 6n + 1)}{3n^3}.$ $\lim_{n \to \infty} \sigma_n = \frac{20}{3},$	0.25
		hence the integral is $\frac{20}{3}$.	0.25
	d)	Draw the graph of the function $f(x) = x^2 + x$ on [0,2].	0.25
		A geometric meaning of the definite integral: its value, $\frac{20}{3}$ is the area of the region enclosed by the graph of <i>f</i> , the <i>x</i> -axis, and the vertical line $x = 2$.	0.25
3 (2 p.)		For every $x \ge 1$ we have $0 < x^2 + 1 \le x^2 + x^2 = 2x^2$, and so $\frac{1}{\sqrt[3]{x^3+1}} \ge \frac{1}{\sqrt[3]{2x^2}} = \frac{1}{\sqrt[3]{2}}x^{-2/3} > 0.$	0.25 0.25
		On the other hand the impoper integral $\int_{1}^{+\infty} \frac{1}{\sqrt[3]{2}} x^{-2/3} = \frac{1}{\sqrt[3]{2}} \left[\frac{x^{1/3}}{1/3} \right]_{1}^{\infty} = +\infty$ is divergent,	1
		therefore the given integral is also divergent by comparison.	0.5
4		It is clear that $y \equiv 0$ is a particular solution of the equation. (1)	0.25
(2 p.)		If $y \neq 0$, separating variables we get $\frac{dy}{y^2} = \sin x dx$	0.25
		Integrate the above equation $\int \frac{dy}{y^2} = \int \sin x dx,$	0.25 0.25
		$\frac{1}{y} = \cos x + C \text{ for } C \in \mathbb{R}, \text{ so}$	0.25 0.25
		Therefore $y = \frac{1}{\cos x + c}$, for $C \in \mathbb{R}$. (2)	0.25
		Conclusion : the solutions of the equation are given by (1) and (2).	0.25