June 12, 2016

FINAL EXAM MATH 17B- No.1 Duration 75 minutes

Unauthorized materials

- **Exercise 1.** Evaluate the following integrals.
- a) 2.0 pt (First make an appropriate substitution, and then use IBP) $\int_0^3 \sqrt{x+1} \ln \sqrt{x+1} dx$.
- b) 1.0 pt $\int_{1}^{\infty} \frac{1}{x^{\frac{3}{2}}} dx.$

Exercice 2. Denote by L(t) the length of a fish at time t and assume that the fish grows according the von Bertalanffy equation

$$\frac{dL}{dt} = 2.2 \ (25 - L), \text{ with } L(0) = 5.$$

- a) 1.0 pt Solve the equation.
- b) |1.0 pt| Find the length of the fish at time t = 2.
- c) 1.0 pt Find the asymptotic length of the fish, that is, find $\lim_{t\to\infty} L(t)$.

Exercice 3. Let N(t) denote the size of a population at time t that satisfies the logistic equation

$$\frac{dN}{dt} = 4N(1 - \frac{N}{40}) - 2N := g(N), \text{ for } N \ge 0.$$

- a) |1.0 pt| Graph N(t).
- b) 3.0 pt Find all equilibria of the equation and determine their stability using both (i) the graphical approach, and (ii) the analytical approach.

Edited by Quang Sang Phan

Reviewed by

June 12, 2016

FINAL EXAM MATH 17B- No.2 Duration 75 minutes

Unauthorized materials

- **Exercise 1.** Evaluate the following integrals
- a) 2.0 pt (First make an appropriate substitution, and then use IBP) $\int_{1}^{4} \sqrt{x} \ln \sqrt{x} dx$.
- b) 1.0 pt $\int_{1}^{\infty} \frac{1}{x^{\frac{4}{3}}} dx.$

Exercice 2. Denote by L(t) the length of a fish at time t and assume that the fish grows according the von Bertalanffy equation

$$\frac{dL}{dt} = 1.8 \ (30 - L), \text{ with } L(0) = 8.$$

- a) 1.0 pt Solve the equation.
- b) |1.0 pt| Find the length of the fish at time t = 3.
- c) 1.0 pt Find the asymptotic length of the fish, that is, find $\lim_{t\to\infty} L(t)$.

Exercice 3. Let N(t) denote the size of a population at time t that satisfies the logistic equation

$$\frac{dN}{dt} = 3N(1 - \frac{N}{30}) - 2N := g(N), \text{ for } N \ge 0.$$

- a) 1.0 pt Graph N(t).
- b) 3.0 pt Find all equilibria of the equation and determine their stability using both (i) the graphical approach, and (ii) the analytical approach.

Edited by Quang Sang Phan

Reviewed by