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Real-valued function of multivariables Limits and continuity Partial derivatives Differentibility, tangent plane, linear approximation Vector-valued function

Let Rn be the set of all n− tuples (x1, x2, . . . , xn),

Rn = {(x1, x2, . . . , xn) : x1 ∈ R, x2 ∈ R, . . . , xn ∈ R}.

Definition

Suppose D ⊆ Rn. We write a real-valued function f of n
independent variables on D as

f : D −→ R
(x1, x2, . . . , xn) 7→ f (x1, x2, . . . , xn)

D is called the domain of f , and the set

{w ∈ R : w = f (x1, x2, . . . , xn), (x1, x2, . . . , xn) ∈ D}

is the range of f .
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Example 1 : evaluate the function

f (x , y , z) =
x + y

z2

at the point (1, 2, 3) and (−1, 2, 3). Give the domain of f .

Example 2 : considering the function

f (x , y) =
√

4− x2 − y 2.

Give and then graph the domain of f in x − y plane. Find the
range of f .

Example 3 The same above question for the function
f =

√
y 2 − x .
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The graph of a function of two variables

Considering the function z = f (x , y), (x , y) ∈ D ⊆ R.
Using the Cartesian coordinate system to locate (x , y , z) in
3-dimensional space, we get the graph of the function as a
surface in 3-dimensional space.

Example 1 : z = x + y − 1.

Example 2 : z =
√

4− x2 − y 2. (an upper hemisphere)

Example 3 : z = 4x2 + y 2. (an elliptic paraboloid)

Example 4 : z = 2x2 − y 2. (a hyperbolic paraboloid)

Example 4 : z =
√

4− 2x2 − y 2. (an hemi-ellipsoid)



a hemisphere

z =
√

4− x2 − y 2



an elliptic paraboloid

z = 4x2 + y 2



a hyperbolic paraboloid

z = 2x2 − y 2



an ellipsoid (like a rugby ball)



Level curves

Definition

Level curves of a function z = f (x , y) are curves in x − y
plane with equations f (x , y) = c , where c is a constant in the
range of f .

Horizontal traces (contour lines) are raised from level curves
and the graph is formed by lifting the level curves.

Example : determine level curves of the following functions

z =
√

4− x2 − y 2

z = x2 + y 2 (Round incense)

z = 2x2 − y 2



Level curves

Definition

Level curves of a function z = f (x , y) are curves in x − y
plane with equations f (x , y) = c , where c is a constant in the
range of f .

Horizontal traces (contour lines) are raised from level curves
and the graph is formed by lifting the level curves.

Example : determine level curves of the following functions

z =
√

4− x2 − y 2

z = x2 + y 2 (Round incense)

z = 2x2 − y 2



Level curves

Definition

Level curves of a function z = f (x , y) are curves in x − y
plane with equations f (x , y) = c , where c is a constant in the
range of f .

Horizontal traces (contour lines) are raised from level curves
and the graph is formed by lifting the level curves.

Example : determine level curves of the following functions

z =
√

4− x2 − y 2

z = x2 + y 2 (Round incense)

z = 2x2 − y 2



Informal definition of limits

lim
(x ,y)→(x0,y0)

f (x , y) = L.

Remark (x , y) can approach (x0, y0) along any path.

Example 1 :

lim
(x ,y)→(1,1)

(2x + y) = 2 + 1 = 3.

Example 2 :

lim
(x ,y)→(0,1)

(x2 − y 2) = 02 − 12 = −1.

* Self reading limit laws, page 617.
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Remark If (x , y) approaches (x0, y0) along two paths,
however f (x , y) approaches two different values, then there is
not limit.

Example :

lim
(x ,y)→(0,0)

x2 − y 2

x2 + y 2
.



Continuity

A function f (x , y) is continuous at (x0, y0) if the following
hold,

1 f (x , y) is defined at (x0, y0) ;

2 lim(x ,y)→(x0,y0) f (x , y) exists ;
3 lim(x ,y)→(x0,y0) f (x , y) = f (x0, y0).

Example 1 : The function f (x , y) = x2 + 2x + y 2 − 1 is
continuous at (0, 0).

Example 2 : The function f (x , y) = x2−y2

x2+y2 for (x , y) 6= 0, and

0 for (x , y) = 0

f (x , y) =

{
x2−y2

x2+y2 for (x , y) 6= (0, 0)

0 for (x , y) = (0, 0)

is discontinuous at (0, 0).

Remark The composition of continuous functions is also
continuous.
Example : f (x , y) = ex

2+y2
. (f = eu, with u = x2 + y 2)
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Partial derivatives

Definition

Let f is a function of x , y . Then its partial derivatives at
(x0, y0) are

d

dx
f (x , y0)|x=x0 := fx(x0, y0) =

∂f

∂x
(x0, y0) (w.r.t. x),

d

dy
f (x0, y)|y=y0 := fy (x0, y0) =

∂f

∂y
(x0, y0) (w.r.t. y)

Example : find the partial derivatives of
f (x , y) = x2 + 2x + y 2 − 1.
Example : find the partial derivatives of f (x , y) = x+y

y
+ 2x .

Remark To compute fx , we treat y as constant, and
differentiate f with respect to x .
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Higher-order partial derivatives

We can define the second partial derivatives

fxx =
∂2f

∂x2
, fyy =

∂2f

∂y 2
, fxy =

∂2f

∂y∂x
, fyx =

∂2f

∂x∂y
.

Example : f (x , y) = x3y 2 + 2x2y + 1.

Example : f (x , y) = xey + 2x .

The mixed derivative theorem

If the function f (x , y) has the mixed derivatives fxy , fyx which
are both continuous in a neighborhood of (x0, y0), then we
have fxy (x0, y0) = fyx(x0, y0).
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Differentiability

Consider the function f (x , y) and the (x0, y0) in the domain of
f . Let 4x = x − x0, 4y = y − y0 and
4f = f (x , y)− f (x0, y0) = f (x0 +4x , y0 +4y)− f (x0, y0).

Definition

The function f is called differentiable at (x0, y0) if 4f can be
expressed in the form

4f =

[
∂f

∂x
(x0, y0)4x +

∂f

∂y
(x0, y0)4y

]
+ ε14x + ε24y ,

where ε1 and ε2 → 0 as (4x ,4y)→ (0, 0).

In this case, the differential (also called the total differential)
of f denoted by df , is defined by

df (x0, y0) = [· · · ] = fxdx + fydy .



Differentiability

Consider the function f (x , y) and the (x0, y0) in the domain of
f . Let 4x = x − x0, 4y = y − y0 and
4f = f (x , y)− f (x0, y0) = f (x0 +4x , y0 +4y)− f (x0, y0).

Definition

The function f is called differentiable at (x0, y0) if 4f can be
expressed in the form

4f =

[
∂f

∂x
(x0, y0)4x +

∂f

∂y
(x0, y0)4y

]
+ ε14x + ε24y ,

where ε1 and ε2 → 0 as (4x ,4y)→ (0, 0).

In this case, the differential (also called the total differential)
of f denoted by df , is defined by

df (x0, y0) = [· · · ] = fxdx + fydy .



Differentiability

Consider the function f (x , y) and the (x0, y0) in the domain of
f . Let 4x = x − x0, 4y = y − y0 and
4f = f (x , y)− f (x0, y0) = f (x0 +4x , y0 +4y)− f (x0, y0).

Definition

The function f is called differentiable at (x0, y0) if 4f can be
expressed in the form

4f =

[
∂f

∂x
(x0, y0)4x +

∂f

∂y
(x0, y0)4y

]
+ ε14x + ε24y ,

where ε1 and ε2 → 0 as (4x ,4y)→ (0, 0).

In this case, the differential (also called the total differential)
of f denoted by df , is defined by

df (x0, y0) = [· · · ] = fxdx + fydy .



Tangent plane

If there exists the partial derivative fx(x0, y0), fy (x0, y0), then
the tangent plane to the surface z = f (x , y) at the point
(x0, y0, z0), where z0 = f (x0, y0), has the equation

z = z0 + fx(x0, y0)(x − x0) + fy (x0, y0)(y − y0).



Example : find the tangent plane to the surface

z = f (x , y) = 4x2 + y 2

at the point (1, 2, 8).



Linearization

We have
f (x , y) ≈ z0 + dfx0, y0),

f (x , y) ≈ z0 + fx(x0, y0)(x − x0) + fy (x0, y0)(y − y0),

which is the standard linear approximation of the f at the
point (x0, y0) by its tangent plane

Example : find the linearization of f (x , y) = ln(x − 2y 2) at
(3, 1) and use it to find an approximation for f (3.05, 0.95).
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A vector-valued function is a function from domain Rn to
codomain Rm,

f : Rn → Rm

(x1, x2, . . . , xn) 7→ (f1(x1, x2, . . . , xn)), . . . , fm(x1, x2, . . . , xn)).

Example :
f (x , y) = (4x2 + y 2, 2x + y)

f (x , y) = (x sin y , 2x + y , xy)

f (x , y , z) = (
x

yz
, x + y + z)

Phan Quang Sang Nguyen Thuy Hang Chapter 10. Multivariables calculus



Jacobi matrix

The Jacobi matrix or the derivative matrix of f at here
x0 ∈ Rn is

Df (x0) =

 ∂f1
∂x1

· · · ∂f1
∂xn

· · · · · · · · ·
∂fm
∂x1

· · · ∂fm
∂xn

 (x0) (1)

Example : find the Jacobi matrix of the functions

f (x , y) = (4x2 + y 2, 2x + y)

g(x , y) = (x sin y , 2x + y , xy).
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