Chapter 10. Multivariables calculus

Phan Quang Sang
Nguyen Thuy Hang

Vietnam National University of Agriculture

Hanoi, 7 novembre 2017
http ://www.vnua.edu.vn/khoa/fita/pgsang/



€ Real-valued function of multivariables

© Limits and continuity

© Partial derivatives

@ Differentibility, tangent plane, linear approximation

@ Vector-valued function



Real-valued function of multivariables

Let R” be the set of all n— tuples (x1, %o, ..., X,),

R" ={(x1,%,....,xn) :x1 ER,x0 €R,...,x, €R}.

Definition

Suppose D C R". We write a real-valued function f of n
independent variables on D as

f:D — R

(X1, X2, - -y Xn) = F(x1, %2, %)
D is called the domain of f, and the set
{weR:w="Ff(x,x, . ..,%), (x1,%,...,x,) € D}

is the range of f.

<
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Example 1 : evaluate the function

x+y
f(x,y,z) = 2

at the point (1,2,3) and (—1,2,3). Give the domain of .
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Example 2 : considering the function

f(x,y) =V4—x>—y2

Give and then graph the domain of f in x — y plane. Find the
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Example 1 : evaluate the function

x+y
f(x,y,z) = 2

at the point (1,2,3) and (—1,2,3). Give the domain of .

Example 2 : considering the function

f(x,y) =V4—x>—y2

Give and then graph the domain of f in x — y plane. Find the
range of f.

Example 3 The same above question for the function

f=/y —x



The graph of a function of two variables

Considering the function z = f(x, y), (x,y) € D C R.
Using the Cartesian coordinate system to locate (x,y, z) in
3-dimensional space, we get the graph of the function as a
surface in 3-dimensional space.

Examplel : z=x+y — 1.

Example 2 : z = /4 — x?> — y2. (an upper hemisphere)
Example 3 : z = 4x2 + y2. (an elliptic paraboloid)
Example 4 : z = 2x> — y2. (a hyperbolic paraboloid)

Example 4 : z = /4 — 2x?> — y2. (an hemi-ellipsoid)



a hemisphere
4= m

DA



an elliptic paraboloid

z=4x>+y?



a hyperbolic paraboloid

z=2x>—y?

[m] [l = = = o>



an ellipsoid (like a rugby ball)



Level curves

Definition

Level curves of a function z = f(x, y) are curves in x — y
plane with equations f(x, y) = ¢, where c is a constant in the
range of f.
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Horizontal traces (contour lines) are raised from level curves
and the graph is formed by lifting the level curves.



Level curves

Definition

Level curves of a function z = f(x, y) are curves in x — y
plane with equations f(x, y) = ¢, where c is a constant in the
range of f.

Horizontal traces (contour lines) are raised from level curves
and the graph is formed by lifting the level curves.

Example : determine level curves of the following functions

z=1/4—x?>—y?

z = x* + y? (Round incense)

z=2x*—y?



Informal definition of limits

lim  f(x,y)=L.

(%)= (x0.0)

Remark (x,y) can approach (xo, yo) along any path.

Example 1 :

[im 2x+y)=2+1=3.
(ny)—>(1»1)( )



Informal definition of limits

lim  f(x,y)=L.

(%)= (x0.0)

Remark (x,y) can approach (xo, yo) along any path.

Example 1 :

[im 2x+y)=2+1=3.
(ny)—>(1»1)( )

Example 2 :

im (x2—y?)=0%2—-12=—1.
(x,yH(o,l)( )



Informal definition of limits

lim  f(x,y)=L.

(%)= (x0.0)

Remark (x,y) can approach (xo, yo) along any path.

Example 1 :

[im 2x+y)=2+1=3.
(ny)—>(1»1)( )

Example 2 :
lim (x*—y?)=0"-1*>=—1.

(x:y)—(0,1)

* Self reading limit laws, page 617.



Remark If (x,y) approaches (xo, yo) along two paths,
however f(x, y) approaches two different values, then there is

not limit.

Example :

2 .2
im Y
(x)—(0,0) X2 + y?



Continuity

A function f(x, y) is continuous at (X, yo) if the following
hold,
O f(x,y) is defined at (xo, y0);



Continuity

A function f(x, y) is continuous at (xo, yo) if the following
hold,
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(2] Iim(X7y)_>(XO7y0) f(X,y) exists ;
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Example 1 : The function f(x,y) = x> +2x +y? — 1 is
continuous at (0, 0).



Continuity

A function f(x, y) is continuous at (xo, yo) if the following
hold,
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oy = | 55 o () 700
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is discontinuous at (0, 0).



Continuity

A function f(x, y) is continuous at (xo, yo) if the following
hold,

O f(x,y) is defined at (xo, y0);

Q lim(x ) (x0.y0) F (X, ¥) exists;

© 1iM(ey)=(x00) (X, ¥) = Fx0, y0)-

Example 1 : The function f(x,y) = x> +2x +y? — 1 is
continuous at (0, 0).

Example 2 : The function f(x,y) = XV for (x,y) #0, and

2+y
0 for (x,y) =0
X2—y2
oy = | 55 o () 700
0 fOI’ (X,y)f(0,0)

is discontinuous at (0, 0).

~~ 1 —— ~
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Partial derivatives

Let f is a function of x, y. Then its partial derivatives at
(%0, ¥o) are

d of
&f(xa}’oﬂx:xo = &(XOJ/O) — &(Xo,yo) (W.l".t. X),

d of
d—yf(Xo,)/)!yzyo = f,(x0, %0) = 8—y(Xo,YO) (wr.t. y)




Partial derivatives
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d of
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Partial derivatives

Definition

Let f is a function of x, y. Then its partial derivatives at
(%0, ¥o) are

d of
&f(xa}’oﬂx:xo = &(XOJ/O) — &(Xg,yo) (W.l".t. X),

d of
d—yf(Xo,)/)!yzyo = fy(x0, ¥0) = a—y(Xo,YO) (wr.t. y)

Example : find the partial derivatives of
f(x,y) =x*+2x+y*—1.
Example : find the partial derivatives of f(x,y) = X+Ty + 2x.

Remark To compute f,, we treat y as constant, and
differentiate f with respect to x.



Higher-order partial derivatives

We can define the second partial derivatives

go 0,0 o
ox2" 7 9y gyox Y Ox0y”

f;(x:

Example : f(x,y) = x3y? + 2x%y + 1.



Higher-order partial derivatives

We can define the second partial derivatives

go 0,0 o
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f;(x:

Example : f(x,y) = x3y? + 2x%y + 1.

Example : f(x,y) = xe¥ + 2x.



Higher-order partial derivatives

We can define the second partial derivatives

Pf Pf 02 PF

f;(X:_a = 3 ooIxy = 53 Iy = 5 45 -
ox2" Y oy2 7Y gyox’ Y OxOy

Example : f(x,y) = x3y? + 2x%y + 1.

Example : f(x,y) = xe¥ + 2x.

The mixed derivative theorem

If the function f(x, y) has the mixed derivatives £, f,» which
are both continuous in a neighborhood of (xp, ¥5), then we
have £, (%0, yo0) = fyx(xo0, Y0)-




Differentiability

Consider the function f(x, y) and the (xo, yo) in the domain of
f.Let Ax=x—x9, Ay =y — yp and
Af =f(x,y) = f(x, %) = f(x + LAx, 50 + Ay) — f(x0, o).
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Differentiability

Consider the function f(x, y) and the (xo, yo) in the domain of
f.Let Ax=x—x9, Ay =y — y and
Af =f(x,y) = f(x, %) = f(x + LAx, 50 + Ay) — f(x0, o).

Definition

The function f is called differentiable at (xg, yo) if Af can be
expressed in the form

of of
Af = &(XOJ/O)AX + a_y(XmYO)Ay talbx+ely,

where ¢; and e, — 0 as (Ax, Ay) — (0,0).

In this case, the differential (also called the total differential)
of f denoted by df, is defined by

df (xo, ¥0) = [ - -] = fedx + £, dy.



Tangent plane

Tangent Plane

= fley

Figure 10.37 The surface z = f(x, v) and its tangent
plane at P = (xu, ¥o. Zo).

If there exists the partial derivative £, (xo, ¥0), f,(x0, Yo), then
the tangent plane to the surface z = f(x, y) at the point
(X0, Yo, Z0), Where zy = f(xo, yo), has the equation

z = 20+ f(x0, o) (X — X0) + £, (X0, o) (¥ — Yo)-



Example : find the tangent plane to the surface
z=f(x,y) = 4x* + y?

at the point (1,2, 8).



Linearization

We have
f(X,y) ~ 2y + dﬂ(07y0)7

f(x,y) = zo + f(x0, ¥o)(x — x0) + £, (X0, ¥0)(¥ — Y0),

which is the standard linear approximation of the f at the
point (xo, o) by its tangent plane



Linearization

We have
f(X,y) ~ 2 + dﬂ(07y0)7
f(x,y) = 20 + f(x0, o) (x — x0) + £, (X0, Y0)(¥ — o),
which is the standard linear approximation of the f at the

point (xo, o) by its tangent plane

Example : find the linearization of f(x,y) = In(x — 2y?) at
(3,1) and use it to find an approximation for f(3.05,0.95).



A vector-valued function is a function from domain R” to
codomain R™,
f:R" - R™

(X1, X2, -« -y Xn) = (A, X2y oo, Xn)), -« oy Fn(X1, X2, -+, Xn))-
Example :
f(x,y) = (4x* +y*,2x + )
f(x,y) = (xsiny,2x + y, xy)
X
f =(—
(x,y,2) (yz,X+y+Z)
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The Jacobi matrix or the derivative matrix of f at here

xXp € R" is
oh .. Of
Ox1 Oxn
Df(XO) = (XO) (1)
Ofm .. Ofnm

Ox1 8_x,,



The Jacobi matrix or the derivative matrix of f at here

xXp € R" is
oh .. Of
Ox1 Oxn
Df(xo): e e (XO) (]_)
Ox1 Oxn

Example : find the Jacobi matrix of the functions
f(x,y) = (4 + 2. 2x + y)

g(x,y) = (xsiny,2x + y,xy).
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