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Exercise 1. 3.0 pt Evaluate the following integrals

a) 1.0 pt
∫ 1
0 x3
√

1 + x2dx.

b) 1.0 pt
∫
x ln(x + 1)dx.

c) 1.0 pt
∫∞
1

1

x
1
2
dx (if it exists).

Exercise 2. 2.0 pt Draw and find the area of the region bounded by y = x2, y = 1
x , y = 4 in the first

quadrant.

Exercice 3. 3.0 pt Denote by L(t) the length of a fish at time t and assume that the fish grows according
the von Bertalanffy equation

dL

dt
= 2(18− L), with L(0) = 6.

a) 1.0 pt Solve the equation.

b) 1.0 pt Find the length of the fish at time t = 1.

c) 1.0 pt Find the average length of the fish between t = 0 and t = 1.

Exercice 4. 2.0 pt Let N(t) denote the size of a population at time t that satisfies the logistic equation

dN

dt
= 2N(1− N

1000
)− 100, for N ≥ 0.

Find all equilibria of the equation and determine their stability.
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Exercise 1. 3.0 pt Evaluate the following integrals

a) 1.0 pt
∫ 2
1 x3
√
x2 − 1dx.

b) 1.0 pt
∫
x ln(x− 1)dx.

c) 1.0 pt
∫∞
1

1

x
3
4
dx (if it exists).

Exercise 2. 2.0 pt Draw and find the area of the region bounded by y = x2, y = 2 − x, y = 0 in the
first quadrant.

Exercice 3. 3.0 pt Denote by L(t) the length of a fish at time t and assume that the fish grows according
the von Bertalanffy equation

dL

dt
=

1

2
(20− L), with L(0) = 8.

a) 1.0 pt Solve the equation.

b) 1.0 pt Find the length of the fish at time t = 2.

c) 1.0 pt Find the average length of the fish between t = 0 and t = 2.

Exercice 4. 2.0 pt Let N(t) denote the size of a population at time t that satisfies the logistic equation

dN

dt
= 2N(1− N

1200
), for N ≥ 0.

Find all equilibria of the equation and determine their stability.
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Exercise 1. 3.0 pt Evaluate the following integrals

a) 1.0 pt Let t =
√

1 + x2, then t2 = 1 + x2, tdt = xdx, x2 = t2 − 1,

I1 =

∫ √2
1

(t2 − 1)t2dt =

∫ √2
1

(t4 − t2)dt = (
t5

5
− t3

3
) |
√
2

1 =
2
√

2 + 2

15
.

b) 1.0 pt
∫
x ln(x + 1)dx. Let u = ln(x + 1), v′ = x then u′ = 1

x+1 , v = 1
2x

2. By IBP we have

I2 =
1

2
x2 ln(x + 1)−

∫
1

2

x2

x + 1
dx =

1

2
x2 ln(x + 1)− 1

2

∫
(x− 1 +

1

x + 1
)dx

=
1

2
x2 ln(x + 1)− 1

2
(
1

2
x2 − x + ln |x + 1|) + C, C ∈ R

=
1

2
x2 ln(x + 1)− 1

4
x2 +

1

2
x− 1

2
ln |x + 1|+ C, C ∈ R.

c) 1.0 pt
∫∞
1

1

x
1
2
dx

∫∞
1 x−

1
2dx = x

1
2
1
2

= +∞, so the integral is not convergent.

Exercise 2. 2.0 pt The points of intersection of these curves in the first quadrant are (14 , 4); (1, 1); (2, 4).
Then

A =

∫ 1

1
4

(4− 1

x
)dx +

∫ 2

1
(x2 − 1

x
)dx

= (4x− ln |x|)|11
4

+ (
x3

3
− ln |x|)|21 =

16

3
− ln 4− ln 2.

Exercice 3. 3.0 pt

a) 1.0 pt We rewrite the equation in the form dL
L−18 = −2dt, then

ln |L− 18| = −2t + ln |C|, C ∈ R, then L = 18 + Ce−2t.

The initial condition L(0) = 6 leads to C = −12. Therefore

L(t) = 18− 12e−2t.



b) 1.0 pt The length of the fish at time t = 1 is

L(1) = 18− 12e−2 = ...

c) 1.0 pt The average length of the fish between t = 0 and t = 1 is

1

1− 0

∫ 1

0
L(t)dt =

1

1− 0

∫ 1

0
(18− 12e−2t)dt = (18t + 6e−2t)|10 = 12 + 6e−2 = ...

Exercice 4. 2.0 pt The equilibrium points are the solutions of the equation dN
dt = 0. Then

3N(1− N

1000
) = 0, so N = 0 or N = 1000.

We have g′(N) = 3(1− 1
500N). We check g′(0) = 3 > 0 and g′(1000) = −3 < 0.

Therefore N = 0 is an unstable equilibrium, and N = 1000 is a locally stable equilibrium.
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Exercise 1. 3.0 pt Evaluate the following integrals

a) 1.0 pt Let t =
√
x2 − 1, then t2 = x2 − 1, tdt = xdx, x2 = t2 + 1,

I1 =

∫ √3
0

(t2 + 1)t2dt =

∫ √3
0

(t4 + t2)dt = (
t5

5
+

t3

3
) |
√
3

0 =
42
√

3

15
.

b) 1.0 pt
∫
x ln(x + 1)dx. Let u = ln(x− 1), v′ = x then u′ = 1

x−1 , v = 1
2x

2. By IBP we have

I2 =
1

2
x2 ln(x− 1)−

∫
1

2

x2

x− 1
dx =

1

2
x2 ln(x− 1)− 1

2

∫
(x + 1 +

1

x− 1
)dx

=
1

2
x2 ln(x− 1)− 1

2
(
1

2
x2 + x + ln |x− 1|) + C, C ∈ R

=
1

2
x2 ln(x− 1)− 1

4
x2 − 1

2
x− 1

2
ln |x− 1|+ C, C ∈ R.

c) 1.0 pt
∫∞
1

1

x
3
4
dx

∫∞
1 x−

3
4dx = x

1
4
1
4

= +∞, so the integral is not convergent.

Exercise 2. 2.0 pt The points of intersection of these curves in the first quadrant are (0, 0); (1, 1); (2, 0).
Then

A =

∫ 1

0
x2dx +

∫ 2

1
(2− x)dx

= (
x3

3
)|10 + (2x− x2

2
)|21 =

5

6
.

Exercice 3. 3.0 pt

a) 1.0 pt We rewrite the equation in the form dL
L−20 = −1

2dt, then

ln |L− 20| = −1

2
t + ln |C|, C ∈ R, then L = 20 + Ce−

1
2
t.

The initial condition L(0) = 8 leads to C = −12. Therefore

L(t) = 20− 12e−
1
2
t.



b) 1.0 pt The length of the fish at time t = 2 is

L(2) = 20− 12e−1 = ...

c) 1.0 pt The average length of the fish between t = 0 and t = 2 is

1

2− 0

∫ 2

0
L(t)dt =

1

2− 0

∫ 2

0
(20− 12e−

1
2
t)dt =

1

2
(20t + 24e−

1
2
t)|20 = 8 + 12e−1 = ...

Exercice 4. 2.0 pt The equilibrium points are the solutions of the equation dN
dt = 0. Then

2N(1− N

1200
) = 0, so N = 0 or N = 1200.

We have g′(N) = 2(1− 1
600N). We check g′(0) = 3 > 0 and g′(1200) = −2 < 0.

Therefore N = 0 is an unstable equilibrium, and N = 1200 is a locally stable equilibrium.


