FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF MATHEMATICS December 27, 2017

FINAL EXAM Course name: Calculus 1 Duration 75 minutes Exam type: Written

Code 1

Exercise 1. Realize the following matrix operations

a)	$\boxed{1.0 \text{ pt}} \begin{bmatrix} 1\\2 \end{bmatrix}$	$\begin{bmatrix} -1\\3 \end{bmatrix} - 2 \begin{bmatrix} \end{array}$	$ \begin{array}{ccc} 2 & 0 \\ -1 & 1 \end{array} $].
b)	$\boxed{1.0 \text{ pt}} \begin{bmatrix} 1\\2 \end{bmatrix}$	$\begin{bmatrix} -1 & 2 \\ -3 & 1 \end{bmatrix} \times$	$\begin{bmatrix} 2\\ -1\\ 2 \end{bmatrix}$	$\begin{bmatrix} -1 \\ 3 \\ 0 \end{bmatrix}.$

Exercise 2. 1.0 pt Use the determinant to determine whether the matrix

$$A = \left[\begin{array}{cc} 3 & -2 \\ 2 & 2 \end{array} \right]$$

is invertible. If it is invertible, compute its inverse.

Exercise 3.

a) $\boxed{1.0 \text{ pt}}$ Find the image of the vector $\begin{bmatrix} -3\\1 \end{bmatrix}$ by the map associated with the matrix $A = \begin{bmatrix} 2 & 1\\3 & -1 \end{bmatrix}$. b) $\boxed{1.5 \text{ pts}}$ Use a rotation matrix to rotate the vector $\begin{bmatrix} 2\\-1 \end{bmatrix}$ counterclockwise by the angle $\frac{\pi}{6}$.

Exercise 4. 1.5 pts Find the dot product of two vectors $x = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $y = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$, and then the angle between them.

Exercise 5. 1.0 pt Prove that the limit

$$\lim_{(x,y)\to(0,0)}\frac{2x-y}{x+y}$$

doesn't exist.

Exercise 6. 2.0 pts Let the function

$$f(x,y) = x^2 e^y - 2xy + 1.$$

a) Find the partial derivatives of f.

b) Find the standard linear approximation of the function at the point (2,0).

EDITED BY QUANG SANG PHAN http://fita.vnua.edu.vn/vi/pqsang/

Reviewed by

FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF MATHEMATICS December 27, 2017

FINAL EXAM Course name: Calculus 1 Duration 75 minutes Exam type: Written

Code 2

Exercise 1. Realize the following matrix operations

a)	$\boxed{1.0 \text{ pt}} 2 \begin{bmatrix} 2\\1 \end{bmatrix}$	$\begin{bmatrix} 0 \\ -3 \end{bmatrix} - \begin{bmatrix} 3 & 1 \\ -2 & 3 \end{bmatrix}.$	
b)	$1.0 \text{ pt} \begin{bmatrix} 2\\ -1 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix} \times \begin{bmatrix} 1 & 3 \\ 3 & -1 \\ -2 & 1 \end{bmatrix}$	

Exercise 2. 1.0 pt Use the determinant to determine whether the matrix

$$A = \left[\begin{array}{cc} 2 & -2 \\ 3 & 2 \end{array} \right]$$

is invertible. If it is invertible, compute its inverse.

Exercise 3.

a) $\boxed{1.0 \text{ pt}}$ Find the image of the vector $\begin{bmatrix} 2\\ -3 \end{bmatrix}$ by the map associated with the matrix $A = \begin{bmatrix} 1 & 2\\ -1 & 1 \end{bmatrix}$. b) $\boxed{1.5 \text{ pts}}$ Use a rotation matrix to rotate the vector $\begin{bmatrix} 3\\ -2 \end{bmatrix}$ counterclockwise by the angle $\frac{\pi}{3}$.

Exercise 4. 1.5 pts Find the dot product of two vectors $x = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ and $y = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$, and then the angle between them.

Exercise 5. 1.0 pt Prove that the limit

$$\lim_{(x,y)\to(0,0)}\frac{x-y}{x+2y}$$

doesn't exist.

Exercise 6. 2.0 pts Let the function

$$f(x,y) = e^x y^2 - 3xy + 1.$$

a) Find the partial derivatives of f.

b) Find the standard linear approximation of the function at the point (0,2).

EDITED BY QUANG SANG PHAN http://fita.vnua.edu.vn/vi/pqsang/

Reviewed by