VIETNAM NATIONAL UNIVERSITY OF AGRICULTURE DEPARTMENT OF MATHEMATICS

MIDTERM EXAM MATH 17A- No.1 Duration 50 minutes

Unauthorized materials

Exercise 1. Suppose that the size of population is given by

$$N(t) = \frac{300t}{3+t}, \ t \ge 0.$$

a) 1.0 pt Determine the size of population as $t \to +\infty$. We call this the limiting population size.

b) 1.0 pt When the size of population is half its limiting size?

Exercise 2. 1.0 pt Use the intermediate value theorem to conclude that the equation

 $\sin x = x$

has a solution in (-1, 1).

Exercise 3. 1.0 pt Find the derivative of the following functions

$$f(x) = \frac{\sin(2x+1)}{\sqrt{x}}.$$

Exercise 4. An object moves along a straight line. Its location at time t is given by

$$s = s(t) = t\sqrt{4-t}, 0 \le t \le 4.$$

a) | 1.0 pt | Find its average velocity between t = 1 and t = 3.

- b) |1.0 pt| Find its velocity at time t = 3.
- c) 1.0 pt When its velocity is zero?
- d) 1.0 pt Find the longest distance of the object from the initial position.
- e) 2.0 pt Examine the monotonicity and then draw the graph of s = s(t).

Edited by Quang Sang Phan http://www.vnua.edu.vn/khoa/fita/pqsang/ VIETNAM NATIONAL UNIVERSITY OF AGRICULTURE DEPARTMENT OF MATHEMATICS

MIDTERM EXAM MATH 17A- No.2 Duration 50 minutes

Unauthorized materials

Exercise 1. Suppose that the size of population is given by

$$N(t) = \frac{400t}{5+t}, \ t \ge 0.$$

a) 1.0 pt Determine the size of population as $t \to +\infty$. We call this the limiting population size.

b) 1.0 pt When the size of population is one third of its limiting size?

Exercise 2. 1.0 pt Use the intermediate value theorem to conclude that the equation

 $\cos x = x$

has a solution in (0, 1).

Exercise 3. 1.0 pt Find the derivative of the following functions

$$f(x) = \frac{\sin x}{\sqrt{2x+1}}.$$

Exercise 4. An object moves along a straight line. Its location at time t is given by

$$s = s(t) = t\sqrt{6-t}, 0 \le t \le 6.$$

a) | 1.0 pt | Find its average velocity between t = 1 and t = 4.

b) 1.0 pt Find its velocity at time t = 3.

c) 1.0 pt When its velocity is zero?

- d) 1.0 pt Find the longest distance of the object from the initial position.
- e) 2.0 pt Examine the monotonicity and then draw the graph of s = s(t).

EDITED BY QUANG SANG PHAN http://www.vnua.edu.vn/khoa/fita/pqsang/