FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF MATHEMATICS

SOCIAL REPUBLIC OF VIETNAM Independence - Freedom - Happiness

MIDTERM EXAM- March 5, 2019 Times: 50 minutes THE01002. CALCULUS 2

Description of the test : this test includes 5 exercises with 6 questions. Points are distributed as follows:

Question	1	2	3	4	5	6
Points	1.5	2.5	1.5	1.5	1.5	1.5

Exercise 1. 1.5 pt Express the following limit as a definite integral

$$\lim_{P \parallel \to 0} \sum_{k=1}^{n} \frac{2c_k + 1}{1 + c_k^2} \, \bigtriangleup x_k,$$

where $P = [x_1, \dots, x_n]$ is a partition of the interval [1, 2]; $c_k \in [x_{k-1}, x_k]$, and $\Delta x_k = x_k - x_{k-1}$.

Exercise 2. 2.5 pt Express the integral $\int_0^1 \sqrt{x+1} dx$ as a limit of Riemann sums. Do not evaluate the limit.

Exercise 3. 1.5 pt Find the derivative with respect to x of the function

$$G(x) = \int_{1}^{x^{2}+1} \ln(t^{2}+1)dt.$$

Exercise 4. 3.0 pt Evaluate the following integrals

- a) $1.5 \text{ pt} \int \frac{x^2 + 2x}{\sqrt{x}} dx.$
- b) 1.5 pt $\int_{e}^{+\infty} \frac{dx}{x\sqrt[3]{\ln^4 x}}$ (if it exists).

Exercise 5. 1.5 pt Suppose that the temperature (measured in degrees Fahrenheit) in a growing chamber varies over a 24-hour period according to

$$T(t) = 68 + \sin(\frac{\pi}{12}t),$$

for $0 \le t \le 24$. Find the average temperature of the chamber.

LECTURER Quang Sang PHAN

CORRECTION for MIDTERM EXAM- March 5, 2019

Exercise 1. 1.5 pt Express the following limit as a definite integral

$$\lim_{\|P\|\to 0} \sum_{k=1}^{n} \frac{2c_k+1}{1+c_k^2} \, \bigtriangleup x_k = \int_1^2 \frac{2x+1}{1+x^2} dx.$$

Exercise 2. 2.5 pt The function is continuous on [0,1] so is integrable on [0,1]. We use an equal partition P for [0,1] with

$$x_0 = 0, x_1 = \frac{1}{n}, \cdots, x_k = \frac{k}{n}, \cdots, x_n = 1.$$

This partition satisfies $||P|| = \frac{1}{n} \to 0$ as $n \to +\infty$ We choose the sampling points as right (or left) endpoints of the subintervals:

$$c_1 = \frac{1}{n}, c_2 = \frac{2}{n}, \cdots, c_k = \frac{k}{n}, \cdots, c_n = 1.$$

Then the integral can express as a limit of the corresponding Riemann sum

$$\int_{0}^{1} \sqrt{x+1} dx = \lim_{n \to \infty} \sum_{k=1}^{n} \sqrt{\frac{k}{n} + 1} \frac{1}{n}.$$

Exercise 3. 1.5 pt

$$G'(x) = \ln((x^2+1)^2+1) (x^2+1)' = 2x \ln(x^4+2x^2+2).$$

Exercise 4. 3.0 pt Evaluate the following integrals

a) 1.5 pt
$$\int \frac{x^2 + 2x}{\sqrt{x}} dx = \int (x^{\frac{3}{2}} + 2x^{\frac{1}{2}}) dx = \frac{2}{5}x^{\frac{5}{2}} + \frac{4}{3}x^{\frac{3}{2}} + C = \frac{2}{5}x^2\sqrt{x} + \frac{4}{3}x\sqrt{x} + C, \ C \in \mathbb{R}$$

b) 1.5 pt Let $t = \ln x$, then $dt = \frac{dx}{x}$. When x = e then t = 1, and $t \to +\infty$ as $x \to +\infty$.

$$\int_{e}^{+\infty} \frac{dx}{x\sqrt[3]{\ln^4 x}} = \int_{1}^{+\infty} \frac{dt}{\sqrt[3]{t^4}} = \int_{1}^{+\infty} t^{\frac{-4}{3}} = -3t^{\frac{-1}{3}}]_{1}^{+\infty} = -3\lim_{t \to +\infty} t^{\frac{-1}{3}} + 3 = 3.$$

Exercise 5. 1.5 pt

$$T_{avg} = \frac{1}{24} \int_0^{24} (68 + \sin\frac{\pi t}{12}) dt = \frac{1}{24} [68t - \frac{12}{\pi} \cos\frac{\pi t}{12}]_0^{24} = \frac{1}{24} [68 \times 24 - \frac{12}{\pi} \cos(2\pi) + \frac{12}{\pi} \cos 0] = 68.$$

LECTURER Quang Sang PHAN