FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF MATHEMATICS School year 2019-2020

SOCIAL REPUBLIC OF VIETNAM Independence - Freedom - Happiness December 19, 2019

CALCULUS 1 (THE01001) - FINAL EXAM

Times: 75 minutes

Description of the test: this is a closed-book exam, any support material is not permitted; this test includes 5 problems with 8 questions. Points are distributed as follows:

Question	1	2	3	4	5	6	7	8
Points	1.0	1.0	1.0	1.5	1.5	1.5	1	1.5

Problem 1. Consider the linear map associated to the matrix $A = \begin{bmatrix} -3 & 2 \\ 2 & 1 \end{bmatrix}$.

- a) 1.0 pt Find the image of the vector $\begin{bmatrix} 5\\ -2 \end{bmatrix}$ by the linear map.
- b) | 1.0 pt | Find the inverse matrix of A (if it exists).

Problem 2.

a) 1.0 pt Suppose a vector $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ has length 9 and is 120° counterclockwise form the positive x_2 -axis. Find x_1 and x_2 .

b) 1.5 pt Use a rotation matrix to rotate the vector $\begin{bmatrix} -2\\ 5 \end{bmatrix}$ counterclockwise by the angle 240°.

Problem 3. 1.5 pt Prove that the following limit does not exist

$$\lim_{(x,y)\to(0,0)}\frac{3xy}{2x^2+y^2}.$$

Problem 4. Let the function

$$f(x, y) = 4 - x^2 - y^2.$$

- a) 1.5 pt Determine the range and the level curves of f.
- b) 1.0 pt Find the tangent plane to the graph of f at the point (1, -2, -1).

Problem 5. 1.5 pt Find the Jacobi matrix for the vector-valued function

$$f(x,y) = \left[\begin{array}{c} x^2 + 2y^2 \\ e^{-x^2y^3} \end{array}\right].$$

FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF MATHEMATICS School year 2019-2020

SOCIAL REPUBLIC OF VIETNAM Independence - Freedom - Happiness December 19, 2019

CALCULUS 1 (THE01001) - FINAL EXAM

Times: 75 minutes

Description of the test: this is a closed-book exam, any support material is not permitted; this test includes 5 problems with 8 questions. Points are distributed as follows:

Question	1	2	3	4	5	6	7	8
Points	1.0	1.0	1.0	1.5	1.5	1.5	1	1.5

Problem 1. Consider the linear map associated to the matrix $A = \begin{bmatrix} 2 & 4 \\ 3 & -3 \end{bmatrix}$.

- a) 1.0 pt Find the image of the vector $\begin{bmatrix} -3\\4 \end{bmatrix}$ by the linear map.
- b) |1.0 pt| Find the inverse matrix of A (if it exists).

Problem 2.

- a) 1.0 pt Suppose a vector $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ has length 12 and is 30° counterclockwise form the positive x_2 -axis. Find x_1 and x_2 .
- b) 1.5 pt Use a rotation matrix to rotate the vector $\begin{bmatrix} 4\\3 \end{bmatrix}$ counterclockwise by the angle 210°.

Problem 3. 1.5 pt Prove that the following limit does not exist

$$\lim_{(x,y)\to(0,0)}\frac{5xy}{x^2+2y^2}.$$

Problem 4. Let the function

$$f(x,y) = 9 - x^2 - y^2.$$

- a) 1.5 pt Determine the range and the level curves of f.
- b) 1.0 pt Find the tangent plane to the graph of f at the point (-2, 1, 4).

Problem 5. 1.5 pt Find the Jacobi matrix for the vector-valued function

$$f(x,y) = \begin{bmatrix} 3x^2 + y^2 \\ e^{-x^3y^2} \end{bmatrix}.$$

SOLUTION FOR THE FINAL EXAM CODE 1: FE-TH1-1920

Problem 1.

a) $\boxed{1.0 \text{ pt}}$ The image of the vector $\begin{bmatrix} 5\\-2 \end{bmatrix}$ by the linear map is $Ax = \begin{bmatrix} -3 & 2\\2 & 1 \end{bmatrix} \times \begin{bmatrix} 5\\-2 \end{bmatrix} = \begin{bmatrix} -19\\8 \end{bmatrix}.$

b) 1.0 pt $det(A) = -7 \neq 0$ so A is invertible.

$$A^{-1} = \frac{1}{-7} \begin{bmatrix} 1 & -2 \\ -2 & -3 \end{bmatrix} = \begin{bmatrix} -1/7 & 2/7 \\ 2/7 & 3/7 \end{bmatrix}$$

Problem 2.

a) 1.0 pt The vector is 120° counterclockwise form the positive x_2 -axis so it is $120^\circ + 90^\circ = 210^\circ$ counterclockwise form the positive x_1 -axis, $\alpha = 210^\circ$. Then we have

$$x_1 = r \cos \alpha = 9 \cos 210^o = -9\sqrt{3/2},$$
$$x_2 = r \sin \alpha = 9 \sin 210^o = -9/2.$$

b) |1.5 pt| The angle $\alpha = 240^{\circ}$. The rotation matrix is

$$R_{\alpha} = \begin{bmatrix} \cos 240^{\circ} & -\sin 240^{\circ} \\ \sin 240^{\circ} & \cos 240^{\circ} \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix}.$$

Then the rotation of the vector is

$$\begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix} \times \begin{bmatrix} -2 \\ 5 \end{bmatrix} = \begin{bmatrix} \frac{2+5\sqrt{3}}{2} \\ \frac{2\sqrt{3}-5}{2} \end{bmatrix}.$$

Problem 3. 1.5 pt Along the x-axis, y = 0: the limit becomes

$$\lim_{x \to 0} \frac{3x \times 0}{2x^2 + 0^2} = 0.$$

Along the straight line x = y: the limit becomes

$$\lim_{x=y\to 0} \frac{3x^2}{2x^2+x^2} = \lim_{x=y\to 0} \frac{3x^2}{3x^2} = 1.$$

Along two different curves, the function approaches two different values $0 \neq 1$, therefore the limit does not exist.

Problem 4.

a) 1.5 pt Since $x^2 \ge 0, y^2 \ge 0$ for any x, y so $f(x, y) \le 4$. Hence the range of f is $R(f) = (-\infty, 4]$. Now let c be a value in the range of $f, c \le 4$, and we consider the equation

$$f(x,y) = 4 - x^2 - y^2 = c,$$

 $x^2 + y^2 = 4 - c.$

If c = 4 then the above equation becomes

$$x^2 + y^2 = 0 \Leftrightarrow x = y = 0;$$

If c < 4 then the above equation defines a circle of center (0,0) and radius $\sqrt{4-c}$. Draw some particular level curves...

b) 1.0 pt The partial derivatives are $f_x = -2x$, $f_y = -2y \Rightarrow f_x(1, -2) = -2$, $f_y(1, -2) = 4$. The equation of the tangent plane to the graph of f at the point (1, -2, -1) is

$$z = -1 - 2(x - 1) + 4(y + 2),$$
$$z = -2x + 4y + 9.$$

Problem 5. 1.5 pt The Jacobi matrix for the vector-valued function is

$$J(f) = \begin{bmatrix} (f_1)_x & (f_1)_y \\ (f_2)_x & (f_2)_y \end{bmatrix} = \begin{bmatrix} 2x & 4y \\ -2xy^3e^{-x^2y^3} & -3x^2y^2e^{-x^2y^3} \end{bmatrix}.$$

EDITED BY Quang Sang PHAN

APPROVED BY Thi Thu Giang VU

SOLUTION FOR THE FINAL EXAM CODE 2: FE-TH1-1920

Problem 1.

a) $\boxed{1.0 \text{ pt}}$ The image of the vector $\begin{bmatrix} -3\\ 4 \end{bmatrix}$ by the linear map is

$$Ax = \begin{bmatrix} 2 & 4 \\ 3 & -3 \end{bmatrix} \times \begin{bmatrix} -3 \\ 4 \end{bmatrix} = \begin{bmatrix} 10 \\ -21 \end{bmatrix}.$$

b) 1.0 pt $det(A) = -18 \neq 0$ so A is invertible.

$$A^{-1} = \frac{1}{-18} \begin{bmatrix} -3 & -4 \\ -3 & 2 \end{bmatrix} = \begin{bmatrix} 1/6 & 2/9 \\ 1/6 & -1/9 \end{bmatrix}$$

Problem 2.

a) 1.0 pt The vector is 30° counterclockwise form the positive x_2 -axis so it is $30^\circ + 90^\circ = 120^\circ$ counterclockwise form the positive x_1 -axis, $\alpha = 120^\circ$. Then we have

$$x_1 = r \cos \alpha = 12 \cos 120^\circ = 12 \times (-1/2) = -6,$$
$$x_2 = r \sin \alpha = 12 \sin 120^\circ = 12 \times \sqrt{3}/2 = 6\sqrt{3}.$$

b) | 1.5 pt | The angle $\alpha = 210^{\circ}$. The rotation matrix is

$$R_{\alpha} = \begin{bmatrix} \cos 210^{\circ} & -\sin 210^{\circ} \\ \sin 210^{\circ} & \cos 210^{\circ} \end{bmatrix} = \begin{bmatrix} -\frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix}.$$

Then the rotation of the vector is

$$\begin{bmatrix} -\frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix} \times \begin{bmatrix} 4 \\ 3 \end{bmatrix} = \begin{bmatrix} \frac{3-4\sqrt{3}}{2} \\ \frac{-4-3\sqrt{3}}{2} \end{bmatrix}.$$

Problem 3. 1.5 pt Along the x-axis, y = 0: the limit becomes

$$\lim_{x \to 0} \frac{5x \times 0}{x^2 + 2 \times 0^2} = 0.$$

Along the straight line x = y: the limit becomes

$$\lim_{x=y\to 0} \frac{5x^2}{x^2+2x^2} = \lim_{x=y\to 0} \frac{5x^2}{3x^2} = 5/3.$$

Along two different curves, the function approaches two different values $0 \neq 5/3$, therefore the limit does not exist.

Problem 4.

a) 1.5 pt Since $x^2 \ge 0, y^2 \ge 0$ for any x, y so $f(x, y) \le 9$. Hence the range of f is $R(f) = (-\infty, 9]$. Now let c be a value in the range of $f, c \le 9$, and we consider the equation

$$f(x, y) = 9 - x^2 - y^2 = c,$$

 $x^2 + y^2 = 9 - c.$

If c = 9 then the above equation becomes

$$x^2 + y^2 = 0 \Leftrightarrow x = y = 0;$$

If c < 9 then the above equation defines a circle of center (0,0) and radius $\sqrt{9-c}$. Draw some particular level curves...

b) 1.0 pt The partial derivatives are $f_x = -2x$, $f_y = -2y \Rightarrow f_x(-2,1) = 4$, $f_y(-2,1) = -2$. The equation of the tangent plane to the graph of f at the point (-2, 1, 4) is

$$z = 4 + 4(x + 2) - 2(y - 1)$$
$$z = 4x - 2y + 14.$$

Problem 5. 1.5 pt The Jacobi matrix for the vector-valued function is

$$J(f) = \begin{bmatrix} (f_1)_x & (f_1)_y \\ (f_2)_x & (f_2)_y \end{bmatrix} = \begin{bmatrix} 6x & 2y \\ -3x^2y^2e^{-x^3y^2} & -2x^3ye^{-x^3y^2} \end{bmatrix}$$

EDITED BY Quang Sang PHAN

APPROVED BY Thi Thu Giang VU